Search results

1 – 10 of over 17000
Article
Publication date: 1 May 1999

Alessandra Aprile and Andrea Benedetti

A direct integration method for the dynamic analysis of structures equipped with viscoelastic dampers (VED) is presented in this paper. The constitutive model of the damper is set…

Abstract

A direct integration method for the dynamic analysis of structures equipped with viscoelastic dampers (VED) is presented in this paper. The constitutive model of the damper is set using a system of Maxwell elements composed in parallel (MPS); the evolutive behavior of the VE material is accounted for by introducing temperature‐dependent mechanical properties. The solution procedure follows an incremental approach of implicit type that, by means of a discrete‐time formulation of the problem, allows expression of the damping force discretization in a form suitable to be included in a standard integration scheme. The resulting algorithm is proved to be very effective and robust; the distinctive features of the proposed numerical method suggest the possibility of a successful implementation of an MPS procedure in the frame of a standard finite element code.

Details

Engineering Computations, vol. 16 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 June 2015

Ross P. D. Johnston, Mohammed Sonebi, James B. P. Lim, Cecil G. Armstrong, Andrzej M. Wrzesien, Gasser Abdelal and Ying Hu

This paper describes the results of non-linear elasto-plastic implicit dynamic finite element analyses that are used to predict the collapse behaviour of cold-formed steel portal…

Abstract

This paper describes the results of non-linear elasto-plastic implicit dynamic finite element analyses that are used to predict the collapse behaviour of cold-formed steel portal frames at elevated temperatures. The collapse behaviour of a simple rigid-jointed beam idealisation and a more accurate semi-rigid jointed shell element idealisation are compared for two different fire scenarios. For the case of the shell element idealisation, the semi-rigidity of the cold-formed steel joints is explicitly taken into account through modelling of the bolt-hole elongation stiffness. In addition, the shell element idealisation is able to capture buckling of the cold-formed steel sections in the vicinity of the joints. The shell element idealisation is validated at ambient temperature against the results of full-scale tests reported in the literature. The behaviour at elevated temperatures is then considered for both the semi-rigid jointed shell and rigid-jointed beam idealisations. The inclusion of accurate joint rigidity and geometric non-linearity (second order analysis) are shown to affect the collapse behaviour at elevated temperatures. For each fire scenario considered, the importance of base fixity in preventing an undesirable outwards collapse mechanism is demonstrated. The results demonstrate that joint rigidity and varying fire scenarios should be considered in order to allow for conservative design.

Details

Journal of Structural Fire Engineering, vol. 6 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 August 1996

Haruki Imaoka and J. Atkinson

Gives an overview of the technique of current garment simulation and of the problems for more advanced simulation. To simulate the behaviour of a garment, three important models…

585

Abstract

Gives an overview of the technique of current garment simulation and of the problems for more advanced simulation. To simulate the behaviour of a garment, three important models are usually used. They are: a garment model, a human body and an environment model. The models and the interaction among them are discussed using the conceptual‐mathematical‐posed problem structure of a model proposed by Barzel (1992).

Details

International Journal of Clothing Science and Technology, vol. 8 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 October 2013

Parviz Moradipour, Jamaloddin Noorzaei, Mohd Saleh Jaafar and Farah Nora Aznieta Abdul Aziz

In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high…

Abstract

Purpose

In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high order system of differential equations. The numerical methods are usually used for integration when either there is dealing with discrete data or there is no analytical solution for the equations. Since the numerical methods with more accuracy and stability give more accurate results in structural responses, there is a need to improve the existing methods or develop new ones. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, a new time integration method is proposed mathematically and numerically, which is accordingly applied to single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. Finally, the results are compared to the existing methods such as Newmark's method and closed form solution.

Findings

It is concluded that, in the proposed method, the data variance of each set of structural responses such as displacement, velocity, or acceleration in different time steps is less than those in Newmark's method, and the proposed method is more accurate and stable than Newmark's method and is capable of analyzing the structure at fewer numbers of iteration or computation cycles, hence less time-consuming.

Originality/value

A new mathematical and numerical time integration method is proposed for the computation of structural responses with higher accuracy and stability, lower data variance, and fewer numbers of iterations for computational cycles.

Details

Journal of Engineering, Design and Technology, vol. 11 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 August 2021

Amit Chandra, Anjan Bhowmick and Ashutosh Bagchi

The study investigates the performance of a three-story unprotected steel moment-resisting frame (SMRF) designed for high seismic demand in the fire-only (FO) and post-earthquake…

Abstract

Purpose

The study investigates the performance of a three-story unprotected steel moment-resisting frame (SMRF) designed for high seismic demand in the fire-only (FO) and post-earthquake uniform and traveling fires (PEF). The primary objective is to investigate the effects of seismic residual deformation on the structure's performance in horizontally traveling fires. The traveling fire methodology, unlike conventional fire models, considers a spatially varying temperature environment.

Design/methodology/approach

Multi-step finite element simulations were carried out on undamaged and damaged frames to provide insight into the effects of the earthquake-initiated fires on the local and global behavior of SMRF. The earthquake simulations were conducted using nonlinear time history analysis, whereas the structure in the fire was investigated by sequential thermal-structural analysis procedure in ABAQUS. The frame was subjected to a suite of seven ground motions. In total, four horizontal traveling fire sizes were considered along with the Eurocode (EC) parametric fire for a comparison. The deformation history, axial force and moment variation in the critical beams and columns of affected compartments in the fire heating and cooling regimes were examined. The global structural performance in terms of inter-story drifts in FO and PEF scenarios was investigated.

Findings

It was observed that the larger traveling fires (25 and 48%) are more detrimental to the case study frame than the uniform EC parametric fire. Besides, no appreciable difference was observed in time and modes of failure of the structure in FO and PEF scenarios within the study's parameters.

Originality/value

The present study considers improved traveling fire methodology as an alternate design fire for the first time for the PEF performance of SMRF. The analysis results add to the much needed database on structures' performance in a wide range of fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 11 November 2020

Feng Wang, Fangfang Zhang, Qixiang Huang and Mohammad Salmani

The purpose of this paper is to propose a method with capability of short-time implementation.

Abstract

Purpose

The purpose of this paper is to propose a method with capability of short-time implementation.

Design/methodology/approach

This paper was directed using both experimental tests and simulations to propose a comprehensive method for lifetime estimation of the solder joints.

Findings

A new method with good agreement with experimental tests has been proposed.

Originality/value

It is confirmed that paper is original.

Details

Soldering & Surface Mount Technology, vol. 33 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 August 2023

Jinyao Zhu, Cong Niu, Jinbao Chen, Chen Wang, Dianfu Liu and Decai Yang

The purpose of this study is to describe the proposed alpha solar rotary mechanism (ASRM) and how it is used to accurately modify the solar array of the China Space Station (CSS…

Abstract

Purpose

The purpose of this study is to describe the proposed alpha solar rotary mechanism (ASRM) and how it is used to accurately modify the solar array of the China Space Station (CSS) in orbit to maintain continuous tracking of the sun to provide power. It also highlights the need to evaluate the performance of the ASRM and predict potential failure modes in various extreme scenarios.

Design/methodology/approach

To evaluate the performance of the ASRM, a dynamic model was created and tested under normal and faulty conditions. In addition, a multidirectional stiffness test was conducted on the prototype to verify the accuracy of the ASRM's dynamic model. The high-precision ASRM model was then used to predict potential failure modes and damaged parts in various extreme scenarios.

Findings

The simulation results were in good agreement with the test results, with a maximum error of less than 8.85%. The high-precision ASRM's model was able to accurately predict potential failure modes and damaged parts in extreme scenarios, demonstrating the effectiveness of the proposed model and simulation evaluation test.

Originality/value

The proposed high-precision ASRM model and simulation evaluation test provide an effective way to evaluate the structural safety and optimize the design of the spacecraft. This information can be used to improve the performance and reliability of the CSS's solar array and ensure continuous power supply to the station.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 August 2008

M. Rezaiee‐Pajand and J. Alamatian

This paper aims to provide a simple and accurate higher order predictor‐corrector integration which can be used in dynamic analysis and to compare it with the previous works.

Abstract

Purpose

This paper aims to provide a simple and accurate higher order predictor‐corrector integration which can be used in dynamic analysis and to compare it with the previous works.

Design/methodology/approach

The predictor‐corrector integration is defined by combining the higher order explicit and implicit integrations in which displacement and velocity are assumed to be functions of accelerations of several previous time steps. By studying the accuracy and stability conditions, the weighted factors and acceptable time step are determined.

Findings

Simplicity and vector operations plus accuracy and stability are the main specifications of the new predictor‐corrector method. This procedure can be used in linear and nonlinear dynamic analysis.

Research limitations/implications

In the proposed integration, time step is assumed to be constant.

Practical implications

The numerical integration is the heart of a dynamic analysis. The result's accuracy is strongly influenced by the accuracy and stability of the numerical integration.

Originality/value

This paper presents simple and accurate predictor‐corrector integration based on accelerations of several previous time steps. This may be used as a routine in any dynamic analysis software to enhance accuracy and reduce computational time.

Details

Engineering Computations, vol. 25 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1995

D.W. Jung, D.J. Yoo and D.Y. Yang

In the present work a rigid‐plastic finite elementformulation using a dynamic explicit time integration scheme isproposed for numerical analysis of sheet metal formingprocesses…

Abstract

In the present work a rigid‐plastic finite element formulation using a dynamic explicit time integration scheme is proposed for numerical analysis of sheet metal forming processes. The rigid‐plastic finite element method, based on membrane elements, has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. The explicit scheme, in general, is based on the elastic‐plastic modelling of material requiring large computation time. The resort to rigid‐plastic modelling would improve the computational efficiency, but this involves new points of consideration such as zero energy mode instability. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM (abbreviated from Bending Energy Augmented Membrane) elements, are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and a direct trial‐and‐error method. Computations are carried out for analysis of complicated sheet metal forming processes such as forming of an oilpan and a front fender. The numerical results of explicit analysis are compared with the implicit results, with good agreement, and it is shown that the explicit scheme requires much shorter computational times, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid‐plastic finite element enables an effective computation for complicated sheet metal processes.

Details

Engineering Computations, vol. 12 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 17000