Search results

1 – 10 of 36
Article
Publication date: 12 December 2023

M.A. Xianglin, Haochen Cai, Qiming Yang, Gang Wang and Kun Mao

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the…

Abstract

Purpose

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the newly developed assembly workstation.

Design/methodology/approach

First, spot check the trial production impellers and obtain three indexes that reflect the assembly quality of the impellers. Then, analyze the parameters that affect the assembly quality of the impeller using grey relational analysis (GRA), establish a model for the assembly quality of the range hood impeller based on the generalized grey relational degree and identify the main parameters. After that, analyze the transmission structure of automation assembly workstation, identify the reasons that affect parameters and propose improvement plans. Finally, a trial production is conducted on the automation assembly workstation after adopting the improved plan to verify the quality model of impeller automation assembly.

Findings

The research shows that compared to manual assembly, the automation assembly quality of the impeller using GRA model has been improved, shortening the debugging cycle of the newly developed assembly workstation.

Practical implications

The newly developed automation equipment will have some problems in the trial production stage, which often rely on the experience of engineers for debugging. In this paper, the automation assembly quality model of range hood impeller based on GRA is established, which can not only ensure the quality of finished impeller but also shorten the debugging cycle of the equipment. In addition, GRA can be widely used in the commissioning of other automation equipment.

Originality/value

This study has developed a set of impeller automation assembly workstation. The debugging method in the trial production stage is beneficial to shorten the trial production time and improve the economic benefits.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 27 March 2023

Huanjun Li and Yimin Zhang

There are three purposes in this paper: to verify the importance of bi-directional fluid-structure interaction algorithm for centrifugal impeller designs; to study the…

Abstract

Purpose

There are three purposes in this paper: to verify the importance of bi-directional fluid-structure interaction algorithm for centrifugal impeller designs; to study the relationship between the flow inside the impeller and the vibration of the blade; study the influence of material properties on flow field and vibration of centrifugal blades.

Design/methodology/approach

First, a bi-directional fluid-structure coupling finite element numerical model of the supersonic semi-open centrifugal impeller is established based on the Workbench platform. Then, the calculation results of impeller polytropic efficiency and stage total pressure ratio are compared with the experimental results from the available literature. Finally, the flow field and vibrational characteristics of 17-4PH (PHB), aluminum alloy (AAL) and carbon fiber-reinforced plastic (CFP) blades are compared under different operating conditions.

Findings

The results show that the flow fields performance and blade vibration influence each other. The flow fields performance and vibration resistance of CFP blades are higher than those of 17-4PH (PHB) and aluminum alloy (AAL) blades. At the design speed, compared with the PHB blades and AAL blades, the CFP blades deformation is reduced by 34.5% and 9%, the stress is reduced by 69.6% and 20% and the impeller pressure ratio is increased by 0.8% and 0.14%, respectively.

Originality/value

The importance of fluid-structure interaction to the aerodynamic and structural design of centrifugal impeller is revealed, and the superiority over composite materials in the application of centrifugal impeller is verified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2022

Thanh-Long Le, Tran Trung Nghia, Hong Duc Thong and Mai Hoang Kim Son

This paper aims to focus on the effect of the operating condition such as the impeller speed on the centrifugal fan performance and flow characteristics. The ability to predict…

Abstract

Purpose

This paper aims to focus on the effect of the operating condition such as the impeller speed on the centrifugal fan performance and flow characteristics. The ability to predict the behavior of the airflow motion in a centrifugal blower is essential for obtaining the topology optimization design.

Design/methodology/approach

A physical model of the air blower consisting of these main parts in a blower system: collector, impeller, outlet flange and volute casing, and the appropriate boundary conditions are set up by ANSYS software. Computation fluid dynamics are performed for the numerical analysis. The calculation of blower performance parameters such as total pressure, efficiency and flow rate is based on the Reynolds averaged Navier–Stokes equations and k-εturbulence flow model.

Findings

The numerical results show that the change in operating conditions has a significant effect on the blower performance, and the pressure maintained inside the blower is higher for a larger impeller rotational speed.

Originality/value

This work is original and has not yet been submitted to elsewhere or published previously.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 23 February 2024

Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…

Abstract

Purpose

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.

Design/methodology/approach

By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.

Findings

The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.

Practical implications

The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.

Originality/value

A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 October 2023

Xiuwei Shi, Wujian Ding, Chunjie Xu, Fangwei Xie and Zuzhi Tian

In the process of conveying the solid–liquid two-phase medium of the centrifugal slurry pump, the wear of the flow-passing parts is an important problem affecting its life and…

Abstract

Purpose

In the process of conveying the solid–liquid two-phase medium of the centrifugal slurry pump, the wear of the flow-passing parts is an important problem affecting its life and safe operation. Therefore, a numerical investigation on the wear characteristics of the centrifugal slurry pump under different particle conditions was conducted.

Design/methodology/approach

A solid-liquid two-phase model based on CFD-DEM coupling is established and used to analyze the flow field and the wear characteristics of the flow-passing parts with different particle densities, volume fractions and sizes.

Findings

Particle conditions will affect the pump flow field. To analyze the pump wear characteristics, the wear distribution, wear value and cumulative force laws of flow-passing parts under different particle conditions are obtained. In each flow-passing part, with the increase of particle density, volume fraction and size, the wear area is concentrated and the wear depth increases. Under different particle conditions, the wear is mainly on the volute chamber and the blade pressure surface, and the tangential cumulative force of flow-passing parts is much larger than the normal cumulative force.

Originality/value

An accurate model and a coupled simulation method for predicting the wear of the slurry pump are obtained, and the wear characteristic law can provide a reference for the design of the slurry pump to reduce friction.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 April 2023

Prasenjit Biswas, Deepak Patel, Archana Mallik and Sanjeev Das

The purpose of this paper is to develop a concept and design to cast Al alloys/metal matrix composites (MMCs) by continuous casting process. The various steps involved in the…

115

Abstract

Purpose

The purpose of this paper is to develop a concept and design to cast Al alloys/metal matrix composites (MMCs) by continuous casting process. The various steps involved in the evolution of the design have been reported and discussed in this study.

Design/methodology/approach

On the basis of developed design concept, initial prototype design has been prepared in this study. The casting process's melt flow pattern was studied via computer simulation, and the resulting changes were implemented in the original design. The single-phase fluid flow pattern through bottom feeding technique is studied. The equipment was fabricated based on computer simulation and water modelling studies. Finally, validation was performed for the preparation of Al alloys/ MMCs after parameter optimisation. The results were observed in the optical metallography to confirm the alloying and Al MMC preparation.

Findings

The developed continuous casting process with bottom feeding technique for the addition of constituent particles shows more efficiency in comparison to the existing batch processes. The final manufactured setup demonstrates effective Al alloy/MMC production as the basis for final fabrication has been accomplished by both computer simulation and water model test. In addition, the microstructure exhibits homogeneous distribution, validating the reliability of the setup.

Originality/value

Integrating continuous casting with continuous reinforcement or master alloy addition is novel in this area. The constraints that batch production had that have been rectified will also lower the contemporary cost of production.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 November 2023

Wei Li, Yuxin Huang, Leilei Ji, Lingling Ma and Ramesh Agarwal

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Abstract

Purpose

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Design/methodology/approach

This study uses a full-flow field transient calculation method of mixed-flow pump based on a closed-loop model.

Findings

The findings show the hydraulic losses and internal flow characteristics of the piping system during the start-up process.

Research limitations/implications

Large computational cost.

Practical implications

Improve the accuracy of current numerical simulation results in transient process of mixed-flow pump.

Originality/value

Simplify the setting of boundary conditions in the transient calculation.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 May 2023

Hasan Baş, Fatih Yapıcı and İbrahim İnanç

Binder jetting is one of the essential additive manufacturing methods because it is cost-effective, has no thermal stress problems and has a wide range of different materials…

Abstract

Purpose

Binder jetting is one of the essential additive manufacturing methods because it is cost-effective, has no thermal stress problems and has a wide range of different materials. Using binder jetting technology in the industry is becoming more common recently. However, it has disadvantages compared to traditional manufacturing methods regarding speed. This study aims to increase the manufacturing speed of binder jetting.

Design/methodology/approach

This study used adaptive slicing to increase the manufacturing speed of binder jetting. In addition, a variable binder amount algorithm has been developed to use adaptive slicing efficiently. Quarter-spherical shaped samples were manufactured using a variable binder amount algorithm and adaptive slicing method.

Findings

Samples were sintered at 1250°C for 2 h with 10°C/min heating and cooling ramp. Scanning electron microscope analysis, surface roughness tests, and density calculations were done. According to the results obtained from the analyzes, similar surface quality is achieved by using 38% fewer layers than uniform slicing.

Research limitations/implications

More work is needed to implement adaptive slicing to binder jetting. Because the software of commercial printers is very difficult to modify, an open-source printer was used. For this reason, it can be challenging to produce perfect samples. However, a good start has been made in this area.

Originality/value

To the best of the authors’ knowledge, the actual use of adaptive slicing in binder jetting was applied for the first time in this study. A variable binder amount algorithm has been developed to implement adaptive slicing in binder jetting.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2023

Mingqiu Zheng, Chenxing Hu and Ce Yang

The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent…

Abstract

Purpose

The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery. Aiming at meeting the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery, a fast method for predicting flow fields with periodic behavior is proposed here, with verification in the context of a radial turbine (RT).

Design/methodology/approach

Sparsity-promoting dynamic mode decomposition is used to determine the dominant coherent structures of the unsteady flow for mode selection, and for flow-field prediction, the characteristic parameters including amplitude and frequency are predicted using one-dimensional Gaussian fitting with flow rate and two-dimensional triangulation-based cubic interpolation with both flow rate and rotation speed. The flow field can be rebuilt using the predicted characteristic parameters and the chosen model.

Findings

Under single flow-rate variation conditions, the turbine flow field can be recovered using the first seven modes and fitted amplitude modulus and frequency with less than 5% error in the pressure field and less than 9.7% error in the velocity field. For the operating conditions with concurrent flow-rate and rotation-speed fluctuations, the relative error in the anticipated pressure field is likewise within an acceptable range. Compared to traditional numerical simulations, the method requires a lot less time while maintaining the accuracy of the prediction.

Research limitations/implications

It would be challenging and interesting work to extend the current method to nonlinear problems.

Practical implications

The method presented herein provides an effective solution for the fast prediction of unsteady flow fields in the design of turbomachinery.

Originality/value

A flow prediction method based on sparsity-promoting dynamic mode decomposition was proposed and applied into a RT to predict the flow field under various operating conditions (both rotation speed and flow rate change) with reasonable prediction accuracy. Compared with numerical calculations or experiments, the proposed method can greatly reduce time and resource consumption for flow field visualization at design stage. Most of the physics information of the unsteady flow was maintained by reconstructing the flow modes in the prediction method, which may contribute to a deeper understanding of physical mechanisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2022

Hoang-Quan Chu and Cong-Truong Dinh

This study’s investigation aims to clarify the effect of an additional geometry, i.e. a fillet radius, to the blades of a single-stage transonic axial compressor, NASA Stage 37…

Abstract

Purpose

This study’s investigation aims to clarify the effect of an additional geometry, i.e. a fillet radius, to the blades of a single-stage transonic axial compressor, NASA Stage 37, on its aerodynamic and structural performances.

Design/methodology/approach

Applying the commercial simulation software and the one-way fluid–structure interaction (FSI) approach, this study first evaluated the simulation results with the experimental data for the aerodynamic performances. Second, this paper compared the structural performances between the models with and without fillets.

Findings

This research analyses the aerodynamic results (i.e. total pressure ratio, adiabatic efficiency, stall margin) and the structural outcomes (i.e. equivalent von Mises stress, total deformation) of the single-stage transonic axial compressor NASA Stage 37.

Originality/value

This paper mentions the influence of blade fillets (i.e. both rotor hub fillet and stator shroud fillet) on the compressor performances (i.e. the aerodynamic and structural performances).

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 36