Search results

1 – 10 of 12
Article
Publication date: 14 March 2024

Mustafa Altınel and Uğur Yalçın

This paper aims to examine the uniform diffracted fields from a perfectly magnetic conductive (PMC) surface with the extended theory of boundary diffraction wave (BDW) approach.

Abstract

Purpose

This paper aims to examine the uniform diffracted fields from a perfectly magnetic conductive (PMC) surface with the extended theory of boundary diffraction wave (BDW) approach.

Design/methodology/approach

Miyamoto and Wolf’s symbolic expression of the vector potential was used in the extended theory of BDW integral. This vector potential is applied to the problem, and the nonuniform field expression found was made uniform. Here, the expression is made uniform, using the detour parameter with the help of the asymptotic correlation of the Fresnel function. The BDW theory for the PMC surface extended the diffracted fields, and the uniform diffracted fields were calculated.

Findings

The field expressions obtained were interpreted with the graphs numerically for different aperture radii and observation distances. It has been shown that the BDW is continuous behind the diffracting aperture. There does not exist any discontinuity at the geometrically light-to-shadow transition boundary, as is required by the theory.

Originality/value

The results were graphically compared with diffracted fields for other surfaces. As far as we know, the uniform diffracted fields from the circular aperture on a PMC surface were calculated for the first time with the extended theory of the BDW approach.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 February 2024

Siquan Zhang

In eddy current nondestructive testing, ferrite-cored probes are usually used to detect and locate defects such as cracks and corrosion in conductive materials. However, the…

Abstract

Purpose

In eddy current nondestructive testing, ferrite-cored probes are usually used to detect and locate defects such as cracks and corrosion in conductive materials. However, the generic analytical model for evaluating corrosion in layered conductor using ferrite-cored probe has not yet been developed. The purpose of this paper is to propose and verify the analytical model of an E-cored probe for evaluating corrosion in layered conductive materials.

Design/methodology/approach

A cylindrical coordinate system is adopted and the solution domain is truncated in the radial direction. The magnetic vector potential of each region excited by a filamentary coil is derived first, and then the expansion coefficients of the solution are obtained by matching the boundary and interface conditions between the regions and the subregions. Finally the closed-form expression of the impedance of the multi-turn coil is derived by using the truncated region eigenfunction expansion (TREE) method, and the impedance calculation is carried out in Mathematica. In the frequency range of 100 Hz to 10 kHz, the impedance changes of the E-cored coil and air-cored coil due to the layered conductor containing corrosion are calculated, respectively, and the influences of corrosion on the coil impedance change are investigated.

Findings

An analytical model for the detection and evaluating of corrosion in layered conductive materials using E-cored probe is proposed. The model can quickly and accurately calculate the impedance change of E-cored coil due to corrosion in layered conductor. The correctness of the analytical model is verified by finite element method and experiments.

Originality/value

An accurate theoretical model of E-cored probe for evaluating corrosion of multilayer conductor is presented. The analytical model can be used to detect the inhomogeneity of layered conductor, design ferrite-cored probe or directly evaluate the corrosion defects of layered conductors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 October 2021

Yokesh V., Gulam Nabi Alsath Mohammed and Malathi Kanagasabai

The purpose of this paper is to design a suitable guard trace to reduce the electromagentic interference between two closely spaced high frequency transmission lines. A novel…

Abstract

Purpose

The purpose of this paper is to design a suitable guard trace to reduce the electromagentic interference between two closely spaced high frequency transmission lines. A novel cross-shaped resonator combined via fence is passed down to alleviate far-end and near-end crosstalk (NEXT) in tightly coupled high-speed transmission lines. The distance between the adjacent transmission lines is increased stepwise as a function of trace width.

Design/methodology/approach

A rectangular-shaped resonator via fence is connected by a guard trace has been proposed to overcome the coupling between the traces that is separated by 2 W. Similarly, by creating a cross-shaped resonator via fence connected by guard trace that reduces the spacing further by 1.5 W.

Findings

A tightly coupled transmission line structure that needs separation by a designed unit cell structure. Further research needs to be conducted to improve the NEXT, far-end crosstalk (FEXT) and spacing between the transmission lines.

Originality/value

This study portrays a novel method that combines the resonators via fence with a minimum spacing between the tightly coupled transmission lines which reduce the NEXT and FEXT; thereby reducing the size of the routing area. The resultant test structures are characterized at high frequencies using time domain and frequency domain analysis. The following scattering parameters such as insertion loss, NEXT and FEXT of the proposed method are measured as 1.504 dB, >30 dB and >20 dB, respectively.

Details

Circuit World, vol. 49 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2023

Iqra Masroor and Jamshed Aslam Ansari

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of…

Abstract

Purpose

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of operating frequencies. The purpose of this paper is to propose a novel compact and ultrawideband (UWB) microstrip patch antenna intended for high frequency wireless applications.

Design/methodology/approach

A square microstrip patch antenna was initially modeled on finite element method-based electromagnetic simulation tool high frequency structure simulator. It was then loaded with a rectangular slit and Koch snowflake-shaped fractal notches for bandwidth enhancement. The fabricated prototype was tested by using vector network analyzer from Agilent Technologies, N5247A, Santa Clara, California, United States (US).

Findings

The designed Koch fractal patch antenna is highly compact with dimensions of 10 × 10 mm only and possesses UWB characteristics with multiple resonances in the operating band. The −10 dB measured impedance bandwidth was observed to be approximately 13.65 GHz in the frequency range (23.20–36.85 GHz).

Originality/value

Owing to its simple and compact structure, positive and substantial gain values, high radiation efficiency and stable radiation patterns throughout the frequency band of interest, the proposed antenna is a suitable candidate for high frequency wireless applications in the K (18–27 GHz) and Ka (26.5–40 GHz) microwave bands.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 December 2022

Yokesh V., Gulam Nabi Alsath and Malathi Kanagasabai

The design, fabrication and experimental validation of defected microstrip structure (DMS) are proposed to address the problem of near-end crosstalk (NEXT) and far-end crosstalk…

Abstract

Purpose

The design, fabrication and experimental validation of defected microstrip structure (DMS) are proposed to address the problem of near-end crosstalk (NEXT) and far-end crosstalk (FEXT) between the microstrip transmission lines in a printed circuit board.

Design/methodology/approach

The proposed DMS evolved with the combination of spur line (L-shaped DMS) and U-shaped DMS topologies. This technique reduces the strength of electromagnetic coupling and suppresses crosstalk by optimizing the capacitive and inductive coupling ratio between the linked microstrip lines. The practical inductance value is much more significant in DMS than in defected ground structures (DGS), but the capacitance value remains the same.

Findings

A DMS unit is etched on the aggressor microstrip line instead of the DGS circuit. Because there is no leakage via the ground plane and the circuit size is far smaller than with DGS, the enclosure issue is disregarded. DMS structures have a larger effective inductance and are resistant to electromagnetic interference. A tightly coupled transmission line structure with minimal separation between the coupled microstrip line is designed using DMS. Further research must be conducted to improve the NEXT, FEXT and spacing between the transmission lines.

Originality/value

Simulation and actual measurement results show that the proposed DMS structure can effectively suppress crosstalk by analysing the S-parameters, namely, S_12, S_13 and S_14, with measured values of 1.48 dB, 20.65 dB and 21.099 dB, respectively. The data rate is measured to be 1.34 Gbps as per the eye diagram characterization. The results show that the NEXT and FEXT are reduced by approximately 20 dB in the frequency range of 1–11 GHz for mixed signals. The substantial measured results in the vector network analyser coincide with the computer simulation technology microwave studio suite simulation results.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 October 2023

Omotayo Farai, Nicole Metje, Carl Anthony, Ali Sadeghioon and David Chapman

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure…

Abstract

Purpose

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure monitoring. One of the main challenges for underground WSN deployment is the limited range (less than 3 m) at which reliable wireless underground communication can be achieved using radio signal propagation through the soil. To overcome this challenge, the purpose of this paper is to investigate a new approach for wireless underground communication using acoustic signal propagation along a buried water pipe.

Design/methodology/approach

An acoustic communication system was developed based on the requirements of low cost (tens of pounds at most), low power supply capacity (in the order of 1 W-h) and miniature (centimetre scale) size for a wireless communication node. The developed system was further tested along a buried steel pipe in poorly graded SAND and a buried medium density polyethylene (MDPE) pipe in well graded SAND.

Findings

With predicted acoustic attenuation of 1.3 dB/m and 2.1 dB/m along the buried steel and MDPE pipes, respectively, reliable acoustic communication is possible up to 17 m for the buried steel pipe and 11 m for the buried MDPE pipe.

Research limitations/implications

Although an important first step, more research is needed to validate the acoustic communication system along a wider water distribution pipe network.

Originality/value

This paper shows the possibility of achieving reliable wireless underground communication along a buried water pipe (especially non-metallic material ones) using low-frequency acoustic propagation along the pipe wall.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 27 February 2023

Melanie Schiemer, Thomas Reum and Hannes Toepfer

The purpose of this paper is to present an alternative modeling approach in terms of the determination of a physically equivalent circuit model for one-dimensional (1D) planar…

Abstract

Purpose

The purpose of this paper is to present an alternative modeling approach in terms of the determination of a physically equivalent circuit model for one-dimensional (1D) planar metamaterials in the high-frequency regime, without a postprocessing optimization procedure. Thereby, an efficient implementation of physical relationships is aimed.

Design/methodology/approach

In this paper, a method based on quasi-stationary simulations and mathematical conversions to derive the values for a physically equivalent circuit model is proposed. Because the electromagnetic coupling mechanisms are investigated in detail, a simplification for the considered multiconductor transmission line structure is achieved.

Findings

The results show that the proposed modeling approach is an efficient and physically meaningful alternative to classical full-wave simulation techniques for the investigated inhomogeneous transmission line structure in both the time domain as well as in the frequency domain. In the course of this, the effort is reduced while a comparable accuracy is maintained, whereby specific coupling mechanisms are considered in circuit simulations.

Originality/value

The process to obtain information about physically interpretable lumped element values for a given structure or to determine a layout for known ones is simplified with the aid of the proposed approach. An advantageous adaption of the presented procedure to other areas of application is well conceivable.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 April 2023

Aiyu Dou, Ru Bai, Huachen Zhu and Zhenghong Qian

The noise measurement on magnetoresistive (MR) sensors is generally conducted by techniques including single-channel data sampling and fast Fourier transform (FFT) analysis as…

Abstract

Purpose

The noise measurement on magnetoresistive (MR) sensors is generally conducted by techniques including single-channel data sampling and fast Fourier transform (FFT) analysis as well as two-channel cross-correlation. The single-channel method is easy to implement and is widely used in the noise measurement on MR sensors, whereas the two-channel method can only eliminate part of the system noise. This study aims to address two key issues affecting measurement accuracy: calibration of the measurement system and the elimination of system noise.

Design/methodology/approach

The system is calibrated by using a low-noise metal film resistor in that the system noise is eliminated through power spectrum subtraction. Noise measurement and analysis are conducted for both thermal noise and detectivity of magnetic tunnel junction (MTJ) sensor.

Findings

The thermal noise measurement error is less than 2%. The detectivity of the MTJ sensor reaches 27 pT/Hz1/2 at 2 kHz.

Originality/value

This study provides a more practical solution for noise measurement and system calibration on MR sensors with a bias voltage and magnetic field.

Details

Sensor Review, vol. 43 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 12