Search results

1 – 10 of 194
Article
Publication date: 21 September 2020

J.C. Umavathi and O. Anwar Beg

The purpose of this paper is to investigate thermally and hydrodynamically fully developed convection in a duct of rectangular cross-section containing a porous medium and fluid

Abstract

Purpose

The purpose of this paper is to investigate thermally and hydrodynamically fully developed convection in a duct of rectangular cross-section containing a porous medium and fluid layer.

Design/methodology/approach

The Darcy–Brinkman–Forchheimer flow model is adopted. A finite difference method of second-order accuracy with the Southwell-over-relaxation method is deployed to solve the non-dimensional momentum and energy conservation equations under physically robust boundary conditions.

Findings

It is found that the presence of porous structure and different immiscible fluids exert a significant impact on controlling the flow. Graphical results for the influence of the governing parameters i.e. Grashof number, Darcy number, porous media inertia parameter, Brinkman number and ratios of viscosities, thermal expansion and thermal conductivity parameters on the velocity and temperature fields are presented. The volumetric flow rate, skin friction and rate of heat transfer at the left and right walls of the duct are also provided in tabular form. The numerical solutions obtained are validated with the published study and excellent agreement is attained.

Originality/value

To the author’s best knowledge this study original in developing the numerical code using FORTRAN to assess the fluid properties for immiscible fluids. The study is relevant to geothermal energy systems, thermal insulation systems, resin flow modeling for liquid composite molding processes and hybrid solar collectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2013

Abdelraheem M. Aly, Mitsuteru Asai and Yoshimi Sonda

The purpose of this paper is to show how a surface tension model and an eddy viscosity based on the Smagorinsky sub‐grid scale model, which belongs to the Large‐Eddy Simulation…

Abstract

Purpose

The purpose of this paper is to show how a surface tension model and an eddy viscosity based on the Smagorinsky sub‐grid scale model, which belongs to the Large‐Eddy Simulation (LES) theory for turbulent flow, have been introduced into ISPH (Incompressible smoothed particle hydrodynamics) method. In addition, a small modification in the source term of pressure Poisson equation has been introduced as a stabilizer for robust simulations. This stabilization generates a smoothed pressure distribution and keeps the total volume of fluid, and it is analogous to the recent modification in MPS.

Design/methodology/approach

The surface tension force in free surface flow is evaluated without a direct modeling of surrounding air for decreasing computational costs. The proposed model was validated by calculating the surface tension force in the free surface interface for a cubic‐droplet under null‐gravity and the milk crown problem with different resolution models. Finally, effects of the eddy viscosity have been discussed with a fluidfluid interaction simulation.

Findings

From the numerical tests, the surface tension model can handle free surface tension problems including high curvature without special treatments. The eddy viscosity has clear effects in adjusting the splashes and reduces the deformation of free surface in the interaction. Finally, the proposed stabilization appeared in the source term of pressure Poisson equation has an important role in the simulation to keep the total volume of fluid.

Originality/value

An incompressible smoothed particle hydrodynamics is developed to simulate milk crown problem using a surface tension model and the eddy viscosity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2015

Pablo A. Caron, Marcela A. Cruchaga and Axel E. Larreteguy

The present work is a numerical study of a breaking dam problem. The purpose of this paper is to assess the effect of turbulence and surface tension models in the prediction of…

304

Abstract

Purpose

The present work is a numerical study of a breaking dam problem. The purpose of this paper is to assess the effect of turbulence and surface tension models in the prediction of the interface position in a long-term analysis. Additionally, dimensional effects are analyzed by carrying out both 2D and 3D simulations.

Design/methodology/approach

Finite volume simulations performed with the different models are compared between them and contrasted with numerical results computed using other numerical techniques and experimental data.

Findings

The reported numerical results are in general in good agreement with experimental results available in the literature. They are also consistent with numerical solutions of other authors obtained using different numerical techniques. The results show that the laminar simulations exhibit strong mesh size dependency, while the turbulence models seem to help in producing mesh-independent solutions. Surface tension modeling does not seem to play a relevant role in the interface evolution.

Practical implications

Model validation.

Originality/value

The value of the present work encompass the comparison of different flow conditions used to simulate a free surface problem and their validation by contrasting numerical results with experiments. Also, the results shown in the present work are a contribution to the understanding of the role of some specific aspects of the models in the simulation of the proposed problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

J. Srinivas, J.V. Ramana Murthy and Ali J Chamkha

– The purpose of this paper is to examine the flow, heat transfer and entropy generation characteristics for an inclined channel of two immiscible micropolar fluids.

Abstract

Purpose

The purpose of this paper is to examine the flow, heat transfer and entropy generation characteristics for an inclined channel of two immiscible micropolar fluids.

Design/methodology/approach

The flow region consists of two zones, the flow of the heavier fluid taking place in the lower zone. The flow is assumed to be governed by Eringen’s micropolar fluid flow equation. The resulting governing equations are then solved using the homotopy analysis method.

Findings

The following findings are concluded: first, the entropy generation rate is more near the plates in both the zones as compared to that of the interface. This indicates that the friction due to surface on the fluids increases entropy generation rate. Second, the entropy generation rate is more near the plate in Zone I than that of Zone II. This may be due to the fact that the fluid in Zone I is more viscous. This indicates the more the viscosity of the fluid is, the more the entropy generation. Third, Bejan number is the maximum at the interface of the fluids. This indicates that the amount of exergy (available energy) is maximum and irreversibility is minimized at the interface between the fluids. Fourth, as micropolarity increases, entropy generation rate near the plates decreases and irreversibility decreases. This indicates an important industrial application for micropolar fluids to use them as a good lubricant.

Originality/value

The problem is original as no work has been reported on entropy generation in an inclined channel with two immiscible micropolar fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 June 2022

Sreenadh Sreedharamalle, Sumalatha Baina and Srinivas A.N.S.

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Abstract

Purpose

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Design/methodology/approach

A mathematical model was considered for this study to describe the flow characteristics of two-layered non- Newtonian Jeffrey fluids in an elastic tube. Because Jeffrey fluid model is a better model for the description of physiological fluid motion. Further, this model is a significant generalization of Newtonian fluid model. Analytical expressions for flux, stream functions, velocities and interface velocity have been derived in terms of elastic parameters, inlet, outlet and external pressures. The effects of various pertinent parameters on the flow behavior have been studied.

Findings

The volumetric flow rate was calculated by different models of Mazumdar (1992) and Rubinow and Keller (1972); from this it was found that the flux of Jeffrey fluid is more in the case of Rubinow and Keller model than Mazumdar. A comparative study is made between single-fluid and two-fluid models of Jeffrey fluid flows and it was observed that more flux and higher velocities were observed in the case of two-fluid model rather than single-fluid model. Furthermore, when both the Jeffrey parameter tends to zero and ratios of viscosities and radii are unity, the results in this study agree with those of Rubinow and Keller (1972).

Originality/value

To describe the fluid flow in an elastic tube with two-layered systems, the models and solutions developed here are very important. These results will be highly suitable in analyzing the rheological characteristics of blood flow in a small blood vessel because of their elastic nature.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 November 2015

Cheng Gao, Rui-Na Xu and Pei-Xue Jiang

Lattice Boltzmann method (LBM) is employed to explore friction factor of single-phase fluid flow through porous media and the effects of local porous structure including geometry…

Abstract

Purpose

Lattice Boltzmann method (LBM) is employed to explore friction factor of single-phase fluid flow through porous media and the effects of local porous structure including geometry of grains in porous media and specific surface of porous media on two-phase flow dynamic behavior, phase distribution and relative permeability. The paper aims to discuss this issue.

Design/methodology/approach

The 3D single-phase LBM model and the 2D multi-component multi-phase Shan-Chen LBM model (S-C model) are developed for fluid flow through porous media. For the solid site, the bounce back scheme is used with non-slip boundary condition.

Findings

The predicted friction factor for single-phase fluid flow agrees well with experimental data and the well-known correlation. Compared with porous media with square grains, the two-phase fluids in porous media with circle grains are more connected and continuous, and consequently the relative permeability is higher. As for the factor of specific porous media surface, the relative permeability of wetting fluids varies a little in two systems with different specific surface areas. In addition, the relative permeability of non-wetting fluid decreases with the increasing of specific surface of porous media due to the large flow resistance.

Originality/value

Fluid-fluid interaction and fluid-solid interaction in the SC LBM model are presented, and schemes to obtain immiscible two-phase flow and different contact angles are discussed. Two-off mechanisms acting on the wetting fluids is proposed to illustrate the relative permeability of wetting fluids varies a little in two systems with different specific surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 January 2019

Alireza Rahimi, Aravindhan Surendar, Aygul Z. Ibatova, Abbas Kasaeipoor and Emad Hasani Malekshah

This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made…

Abstract

Purpose

This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene.

Design/methodology/approach

The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations.

Findings

Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results.

Originality/value

The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 December 2020

Qingkai Zhao, Hang Xu and Longbin Tao

The purpose of this paper is to investigate the immiscible two-layer heat fluid flows in the presence of the electric double layer (EDL) and magnetic field. The effects of EDL…

Abstract

Purpose

The purpose of this paper is to investigate the immiscible two-layer heat fluid flows in the presence of the electric double layer (EDL) and magnetic field. The effects of EDL, magnetic field and the viscous dissipative term on fluid velocity and temperature, as well as the important physical quantities, are examined and discussed.

Design/methodology/approach

The upper and lower regions in a horizontal microchannel with one layer being filled with a nanofluid and the other with a viscous Newtonian fluid. The nanofluid flow in the lower layer is described by the Buongiorno’s nanofluid model with passively controlled model at the boundaries. An appropriate set of non-dimensional quantities are used to simplify the nonlinear systems. The resulting coupled nonlinear equations are solved by using homotopy analysis method.

Findings

The present work demonstrates that increasing the EDL thickness and Hartmann number can restrain the fluid flow. The Brinkmann number has a significant role in the enhancement of heat transfer. It is also identified that the influence of EDL effects on microflow cannot be ignored.

Originality/value

The effects of viscous dissipation involved in the heat transfer process and the body force because of the EDL and the magnetic field are considered in the thermal energy and momentum equations for both regions. The detailed derivation procedure of the analytical solution for electrostatic potential is provided. The analytical solutions can lead to improved understanding of the complex microfluidic systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2013

M. Saleem, A. Hossain and R.S.R. Gorla

The purpose of this paper is to conduct a numerical study of the effect of magnetic field on thermocapillary convection of a two layered system of Newtonian fluids, confined in a…

Abstract

Purpose

The purpose of this paper is to conduct a numerical study of the effect of magnetic field on thermocapillary convection of a two layered system of Newtonian fluids, confined in a rectangular cavity. The flow within the cavity is subject to the horizontal temperature gradient. Attention is focused on how the heat transfer and flow properties are affected subject to the applied magnetic field, particularly in the lower layer. For this purpose, the fluid combinations of di‐Boron Trioxide (B2O3) over Gallium Arsenide GaAs (III‐V), and Silicon oil 10 cSt over Fluorinert FC 70 are considered in the present study.

Design/methodology/approach

The non‐linear two‐dimensional vorticity transport equations along with the energy equations are solved for the two liquid layers using the Alternate Direct Implicit method, whereas the elliptic partial differential equations of the stream function are solved using the Successive Over Relaxation method.

Findings

It was found that despite the significant reduction of flow in the two layers, the number of cells in the lower layer increases with the increase in Hartmann number Ha. However, the flow intensity decreases with the increase in Hartmann number. This decrease is more pronounced in the lower layer, as compared to the upper layer. The numerical scheme employed for the solution is found to be in good agreement with the previous work.

Research limitations/implications

The analysis is made for two layer liquid system with undeformable interface and free surface. The detailed study of the effect of magnetic field on oscillatory Marangoni convection in two layer system with deformable interface is left for future work.

Practical implications

The approach is useful in optimizing the flow properties of the fluids in a two layer system, particularly the lower layer, to yield the results of potential practical interest.

Originality/value

The results of the study may be of some interest to researchers in the field of semiconductor technology, as the melt control is intensively investigated for the development in the manufacture of defect‐free semiconductors and crystals.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

Lan Xu, HongYing Liu, Na Si and Eric Wai Ming Lee

An electrospinning process is a multi-phase and multi-physics process. The purpose of this paper is to numerically simulate the two-phase flow in the electrospinning process. The…

Abstract

Purpose

An electrospinning process is a multi-phase and multi-physics process. The purpose of this paper is to numerically simulate the two-phase flow in the electrospinning process. The numerical results can offer in-depth insight into physical understanding of many complex phenomena which cannot be fully explained experimentally.

Design/methodology/approach

The two-phase flow can be calculated by solving the modified Navier-Stokes equations under the influence of electric field and the interface between the two fluids has been determined by using the Volume of Fluids (VOF) method. A realizable k-e model is used to model the turbulent viscosity. The numerical results can be obtained using Computational Fluid Dynamics (CFD) techniques.

Findings

The numerical simulation is a powerful tool to controlling over electrospinning parameters such as voltage, flow rate, and others.

Research limitations/implications

The numerical simulation of two-phase flow model will take into account solvent evaporation and solidification of the jet, which play pivotal roles in determining the internal fiber morphology of the jet to be described here.

Originality/value

This paper deals with studying numerically the two-phase flow in the electrospinning process by applying CFD techniques. And the flow is modeled by ANSYS(FLUENT) using the VOF model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 194