Search results

1 – 10 of over 2000
Article
Publication date: 8 May 2023

Mengmeng Li, Jian Chen, Jingtao Sun, Long Hao, Di Wu, Jianqiu Wang and Wei Ke

The purpose of this study is to investigate the initial corrosion behavior of pure Mg, AZ31 and AZ91 alloys in phosphate buffer solution (PBS) and to characterize the features in…

Abstract

Purpose

The purpose of this study is to investigate the initial corrosion behavior of pure Mg, AZ31 and AZ91 alloys in phosphate buffer solution (PBS) and to characterize the features in corrosion type and resistance of the corrosion product layer.

Design/methodology/approach

The scanning electron microscopy, equipped with energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy have been used to characterize the as-corroded samples. Besides, the Mg2+ concentration in PBSs has been determined by inductively coupled plasma atomic emission spectrum.

Findings

It has been found that pure Mg suffers pit corrosion, and AZ31 initially undergoes pit corrosion and then uniform corrosion dominates with an extended immersion duration. However, AZ91 exhibits the uniform corrosion with the highest corrosion rate among the three materials. Besides, the corrosion product layer on AZ31 has the best compactness and corrosion resistance.

Originality/value

The findings add depth in understanding the corrosion of pure Mg and its alloys in PBS and also have guiding significance in exploring the effects by alloyed elements to develop new biomaterials with better performance.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 September 2013

Zuhair Malaibari, Ramazan Kahraman and Abdur Rauf

The purpose of this study was to investigate the performances of three inhibitors in controlling corrosion of local mild steel products in distilled water and a simulated salt…

Abstract

Purpose

The purpose of this study was to investigate the performances of three inhibitors in controlling corrosion of local mild steel products in distilled water and a simulated salt solution.

Design/methodology/approach

Corrosion inhibition of mild steel was investigated using electrochemical techniques. Untreated and inhibitor treated specimens were fully immersed in two test solutions, distilled water and the simulated solution of 2.0 wt.% NaCl and 1.0 wt.% Na2SO4.

Findings

During full immersion in the simulated salt solution, sodium dihydrogen orthophosphate was not effective at all, resulting in even higher corrosion rates than that of the untreated specimens. Sodium benzoate was effective for three days only. Dicyclohexylamine nitrite was the most effective of them all, keeping its effectiveness for as much as 20 days. When the specimens were immersed in distilled water, all three inhibitors were effective during the 60 days of immersion while dicyclohexylamine nitrite and sodium benzoate treated specimens performed better than those treated with sodium dihydrogen orthophosphate.

Originality/value

The objective of this research was to investigate the performances of three inhibitors – sodium dihydrogen orthophosphate (inorganic) at 10 mM concentration, dicyclohexylamine nitrite (organic) and sodium benzoate (organic) at 100 mM concentration – in controlling the corrosion of local mild steel products fully immersed in two test solutions, distilled water and the simulated salt solution. All three inhibitors are film forming and anodic type inhibitors. According to the authors' literature review, this study is original and will add value to the studies of inhibition of steel corrosion under similar environments.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 June 2016

X.Q. Liu, Z.L. Liu, J.D. Hu, Z.G. Hou, Q.C. Tian and H.Z. Wang

The purpose of this study is to explore the corrosion behaviors of tube pile steel with the addition of 0.2 per cent Cu and 0.2 per cent Cu-0.2 per cent Cr in half-immersion

Abstract

Purpose

The purpose of this study is to explore the corrosion behaviors of tube pile steel with the addition of 0.2 per cent Cu and 0.2 per cent Cu-0.2 per cent Cr in half-immersion environment.

Design/methodology/approach

The electrochemical corrosion behaviors of tube pile steel with different alloy-elements addition were identified using the polarization curve method and electrochemical impedance spectroscopy technique. Corrosion product and its morphology were analyzed by X-ray diffraction, optical microscope and scanning electron microscopy.

Findings

Results indicate that the most serious corrosion occurred in the liquid-air interface zone due to the higher oxygen and water concentration. With the addition of Cu and Cu-Cr, pits were getting smaller and denser, transforming the corrosion type from pitting corrosion to uniform corrosion gradually. Rust layer containing Cu/Cr tended to compact and inhibited the anodic process, while the enrichment of Cu/Cr in rust layer decelerated the dissolution of substrate, thus the expanding of pits was suppressed.

Originality/value

This paper studied the corrosion behaviors of liquid-air interface zone of tube pile steel and verified the transformation of corrosion type with adding Cu, Cu/Cr elements.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 March 2013

Jiayuan Hu, Shun‐an Cao and Jianli Xie

The purpose of this paper is to explore the long‐term corrosion behavior of carbon steel in 3% NaCl solution and evaluate the effect of rust layer on the corrosion process.

Abstract

Purpose

The purpose of this paper is to explore the long‐term corrosion behavior of carbon steel in 3% NaCl solution and evaluate the effect of rust layer on the corrosion process.

Design/methodology/approach

The corrosion behavior of rusted carbon steel in 3% NaCl solution was studied by means of infrared spectroscopy (IR) and electrochemical impedance spectroscopy (EIS).

Findings

The results indicated that the corrosion of carbon steel was affected by chloride ion in initial immersion and then controlled by the rust layer. The rust layer consisted of a thin outer layer (γ‐FeOOH layer) and a thick inner layer (Fe3O4 layer). The outer rust layer facilitated the cathodic process via reduction of γ‐FeOOH, while the inner rust layer provided a large cathode area and oxygen could be reduced on its surface. As a result, the corrosion rate of carbon steel was determined by the limiting diffusion rate of oxygen and stabilized at a high value.

Originality/value

The corrosion model of rusted carbon steel in 3% NaCl solution was established. It is probable that the iron rust in all slightly acidic water with low alkalinity can promote the corrosion process via reduction of γ‐FeOOH. Anti‐corrosion measures for iron in this type of solutions should be aimed to reduce the promoting effect of rust layer on the metal corrosion. The NaCl solution prepared from tap water is more suitable for the substitution of artificial water than that prepared from deionized water.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 August 2019

Hualiang Huang and Furong Bu

The purpose of this study is to provide a theoretical basis for the study of the galvanic corrosion mechanism of copper coupled silver-coating under a thin electrolyte layer in…

Abstract

Purpose

The purpose of this study is to provide a theoretical basis for the study of the galvanic corrosion mechanism of copper coupled silver-coating under a thin electrolyte layer in electronic systems.

Design/methodology/approach

Electrochemical measurements and surface characterizations.

Findings

The results indicate that the potential difference between copper and silver electrodes first quickly increases, and then reaches a relatively stable and large value with the extension of the immersion time. With the significant increase in the cathode/anode area ratio in electronic systems, the area ratio effect obviously accelerates the corrosion of copper due to the remarkable promotion of the cathode process. For a large cathode/anode area ratio, the galvanic current density always maintains a large value and exhibits an increasing trend with the extension of the immersion time, which is attributed that the area ratio effect reduces the protection of corrosion products. For the same area of cathode and anode, the galvanic current density always maintains a small value with the extension of the immersion time due to a low galvanic effect and protective corrosion products.

Practical implications

This work provides some information for the establishment of reliably protective measures for electronic systems in service.

Social implications

This work not only provides some information for the establishment of reliably protective measures for electronic systems in service, but also provides a theoretical basis for the selection of metal materials in microelectronic systems.

Originality/value

This work provides not only a theoretical basis for the study of the galvanic corrosion mechanism of Cu/Ag under a thin electrolyte layer, but also provides some information for the establishment of reliably protective measures for electronic systems in service.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 July 2019

Chi Zhang, Dajiang Zheng, Guang-Ling Song, Yang Guo, Ming Liu and Hamid Kia

This study aims to propose a simple experimental method to distinguish the galvanic corrosion, crevice corrosion and self-corrosion in metal/carbon fiber reinforced polymer (CFRP…

Abstract

Purpose

This study aims to propose a simple experimental method to distinguish the galvanic corrosion, crevice corrosion and self-corrosion in metal/carbon fiber reinforced polymer (CFRP) joints.

Design/methodology/approach

The corrosion behaviors of four different galvanic couples, whose anodes were Zn-coated DP590 steel and Al 6022, and cathodes were two kinds of CFRP, were investigated in immersion and GMW14872 cyclic conditions.

Findings

The results showed that the galvanic corrosion caused by direct contact between CFRP and metals was more serious than that caused by the jointing bolts. The corrosion damage caused by crevice corrosion was severer than that caused by galvanic corrosion. Self-corrosion was also significant, particularly under the cyclic salt spray condition.

Practical implications

Cyclic salt spray test may more reliably simulate the galvanic corrosion of a joint in industrial service environments, and real corrosion damage may be underestimated by a galvanic current measurement.

Originality/value

A deeper understanding of different corrosion mechanisms involved in CFRP/metal joints under different service conditions in industry has been given.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2019

Qianqian Zhang and Huichen Zhang

The purpose of this paper is to evaluate the effect of micro-nano mixed super-hydrophobic structure on corrosion resistance and mechanism of magnesium alloys.

Abstract

Purpose

The purpose of this paper is to evaluate the effect of micro-nano mixed super-hydrophobic structure on corrosion resistance and mechanism of magnesium alloys.

Design/methodology/approach

A super-hydrophobic surface was fabricated on AZ91 and WE43 magnesium alloys by laser etching and micro-arc oxidation (MAO) with SiO2 nanoparticles coating and low surface energy material modification. The corrosion resistance properties of the prepared super-hydrophobic surfaces were studied based on polarization curves and immersion tests.

Findings

Compared with bare substrates, the corrosion resistance of super-hydrophobic surfaces was improved significantly. The corrosion resistance of super-hydrophobic surface is related to micro-nano composite structure, static contact angle and pretreatment method. The more uniform the microstructure and the larger the static contact angle, the better the corrosion resistance of the super-hydrophobic surface. The corrosion resistance of super-hydrophobic by MAO is better than that of laser machining. Corrosion of super-hydrophobic surface can be divided into air valley action, physical shielding, pretreatment layer action and substrate corrosion.

Originality/value

The super-hydrophobic coatings can reduce the contact of matrix with water so that a super-hydrophobic coating would be an effective way for magnesium alloy anti-corrosion. Therefore, the corrosion resistance properties and mechanism of the prepared super-hydrophobic magnesium alloys were investigated in detail.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 March 2017

Fan Yi, Wang Qingfeng and Yang Wenxiu

The purpose of this study is to study the pitting caused by Ca-Al-O-S composite inclusions of low-alloy steel in 3 Wt.% NaCl solution and 0.01M NaHSO3 solution.

Abstract

Purpose

The purpose of this study is to study the pitting caused by Ca-Al-O-S composite inclusions of low-alloy steel in 3 Wt.% NaCl solution and 0.01M NaHSO3 solution.

Design/methodology/approach

The corrosion in 0.01M NaHSO3 was much weaker than in 3 Wt.% NaCl 3D display of the pitting formation and development process that has been calculated using scanning electron microscope (SEM) and laser scanning confocal microscopy (LSCM). In addition, a corrosion mechanism of pitting formation by galvanic interaction of composite inclusion and base metal has been proposed.

Findings

Results show that in immersion test, metal base around inclusions was dissolved due to corrosion. Corrosion on the metal base closer to inclusions was more severe.

Originality/value

A corrosion mechanism of pitting formation by galvanic interaction of composite inclusion and base metal has been proposed.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 February 2019

BaoZhuang Sun, Wenju Liao, Zhong Li, Zhiyong Liu and Cuiwei Du

To study the corrosion behavior of pipeline steel in coastal areas, a tidal seawater macro-cell corrosion device was built using a cycle soaking tank and a macro-cell corrosion

Abstract

Purpose

To study the corrosion behavior of pipeline steel in coastal areas, a tidal seawater macro-cell corrosion device was built using a cycle soaking tank and a macro-cell corrosion facility to simulate the corrosion behavior of pipeline steel in a simulated coastal environment (dry and wet alternations during seawater-soil corrosion macro-cell processes).

Design/methodology/approach

The corrosion behaviors were studied via the weight loss method, electrochemical methods and morphological observations on corrosion.

Findings

The results show that during the initial stage of tidal seawater/soil macro-cell corrosion process of the X65 steel, the working electrode on the seawater side is the anode of the macro-battery. As corrosion progresses, the anode and the cathode of the macro-battery become inverted. As the area ratio and the dry – wet ratio increase, the time of anode and cathode inversion shortens. Galvanic current density decreases as the dry – wet ratio increases and increases as the area ratio increases. The corrosion process of macro-cell is affected by the reversal of anode and cathode. After the reversal of anode and cathode, the corrosion rate is mainly controlled by dry – wet alternating corrosion.

Originality/value

The corrosion behavior of a pipeline steel in a coastal environment was studied using a tidal seawater macro-cell corrosion device. The synergism effect between the tidal seawater and seawater-soil macro-cell on corrosion behavior was clarified.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 1999

L.S. Hernández, B. del Amo and R. Romagnoli

Substitution of zinc chromate or zinc yellow, traditionally used as anticorrosive pigment, for other phosphate‐based pigments that are not hazardous to health and have the same…

Abstract

Substitution of zinc chromate or zinc yellow, traditionally used as anticorrosive pigment, for other phosphate‐based pigments that are not hazardous to health and have the same anticorrosive behaviour or even better, is studied in this paper. Four alkyd paints were specially prepared; two of them contained calcium acid phosphate or micronised zinc phosphate as anticorrosive pigments respectively. A paint containing zinc chromate was used as reference and a paint without anticorrosive pigments was used as a blank, in which the other ingredients were increased proportionally to attain the desired PVC relationship. The corrosion behaviour of low carbon steel panels coated with these paints in a 3 per cent NaCl solution was assessed by electrochemical impedance spectroscopy (EIS). In addition, other painted panels were evaluated by salt spray and humidity chamber tests. Results of all tests showed that the paint with calcium acid phosphate and especially that with micronised zinc phosphate exhibited better behaviour than paint with zinc chromate. Analysis of impedance parameters (ionic resistance and capacitance of the paint film) against immersion time allowed the paints to be ranked in the same order as that obtained with salt spray and humidity chamber tests.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 2000