Search results

1 – 10 of 18
Article
Publication date: 3 July 2017

Lizhu Liu, Hongju He, Ling Weng and Xiaorui Zhang

The purpose of this paper was to comprehensively understand the effects of imidization process on the structure and properties of polyimide (PI) films through the preparation and…

Abstract

Purpose

The purpose of this paper was to comprehensively understand the effects of imidization process on the structure and properties of polyimide (PI) films through the preparation and characterization of a variety of PI/aluminium oxide (Al2O3) nanocomposite films by using several imidization-based strategies.

Design/methodology/approach

Poly(amic acid) (PAA) containing different amounts of inorganic materials (namely, 0 Wt.%, 4 Wt.%, 8 Wt.%, 12 Wt.% and 16 Wt.%) was synthesized by using pyromellitic dianhydride and 4,4-diaminodiphenyl ether as raw material and N,N-dimethylacetamide as solvent. Subsequently, the solution obtained was casted on a glass substrate and dried by the means of various curing processes. The micro-structure, Fourier transform–infrared spectral features, breakdown field strength, dielectric properties and the corona-resistant time parameters of films were achieved.

Findings

The imidization process influences substantially the properties of composite films. Therefore, as the imidization rate is increased, the corona-resistant time and the electrical breakdown strength of composite films are also improved, while the dielectric constant faces a+ decreasing.

Research limitations/implications

In this paper, the impact of imidization process on the performance of PI/nano-Al2O3 three-layered composite film is reported. However, there are multiple factors governing these systems (such as, interlayer thickness ratio and humidity), which are not discussed herein.

Originality/value

The current study expounds the relationship between imidization ratios as well as the effect of imidization ratio on the performance of the film.

Details

Pigment & Resin Technology, vol. 46 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 November 2012

George K. Stylios

Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1109

Abstract

Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 August 2023

Jiayuan Yan, Xiaoliang Zhang and Yanming Wang

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in…

Abstract

Purpose

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.

Design/methodology/approach

The preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.

Findings

CNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.

Originality/value

The mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 1999

I. Hamerton and B.J. Howlin

The authors are experienced researchers in the selection, evaluation and simulation of polymeric matrix resins for advanced composites. This article reviews the current…

Abstract

The authors are experienced researchers in the selection, evaluation and simulation of polymeric matrix resins for advanced composites. This article reviews the current state‐of‐the‐art in cure monitoring techniques and the application of modern computational methods to determine the kinetics of cure in commonly used aerospace systems. Extensive reference is made to primary sources and conclusions drawn about the possible future developments that may evolve in this area of interest.

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 March 2018

Ling Weng, Ting Wang, Pei-Hai Ju and Li-Zhu Liu

This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding…

Abstract

Purpose

This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding materials with rather high temperature stability, good processability and moderate mechanical properties, the authors chose the polyimide (PI) foam as matrix and ferriferrous oxide (Fe3O4) as fillers to prepare the composite foams with lightweight and rather good electromagnetic interference shielding performance.

Design/methodology/approach

Some polyimide nanocomposite foams with Fe3O4 as fillers have been prepared by in situ dispersion and foaming with pyromellitic dianhydride (PMDA) and isocyanate (PAPI) as raw materials and water as foaming agent. By varying the Fe3O4 contents, a series of PI/Fe3O4 nanocomposite foams with fine microstructures and high thermal stability were obtained. The structure and performances of nanocomposite foams were examined, and the effects of Fe3O4 on the microstructure and properties of composite foams were investigated.

Findings

This work demonstrates that PI/Fe3O4 foams could be fabricated by thermally treating the polyimide foam intermediates with Fe3O4 nanoparticles through a blending reaction of precursors. The final PI/Fe3O4 composite foams maintained the excellent thermal property and showed a super paramagnetic behaviour, which has a positive effect on the improvement of electromagnetic shielding performance.

Research limitations/implications

In this paper, the effects of Fe3O4 on the performances of PI/Fe3O4 composite foam were reported. It provided an effective methodology for the preparation of polymer/Fe3O4 nanocomposite foams, which hold great promise towards the potential application in the areas of electromagnetic shielding materials.

Originality/value

A series of PI/Fe3O4 composite foams with different contents of Fe3O4 were prepared by blending reaction of the precursors. The effects of Fe3O4 on the structures and properties of PI/Fe3O4 composite foam were discussed in detail.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 January 2019

Guangkai Hu, Xiaorui Zhang, Lizhu Liu, Weng Ling and Weiwei Cui

The dispersity of graphene oxide (GO) has an important effect on the properties of epoxy resin (EP) composites. Many modification and dispersion methods require the use of inert…

Abstract

Purpose

The dispersity of graphene oxide (GO) has an important effect on the properties of epoxy resin (EP) composites. Many modification and dispersion methods require the use of inert solvents which do not participate in the modification reaction, although GO can be uniformly dispersed in water and alcohol solvents. Based on this requirement, several inert solvents were selected as dispersion solvents to find out the suitable inert solvent for GO dispersion into EP matrix.

Design/methodology/approach

Several inert solvents with different solubility parameters were selected as dispersion solvents to prepare GO/EP composite. The microstructure, mechanical properties, insulation properties, dielectric properties and thermal property of the composite were characterized, which was due to find suitable inert solvent for GO dispersion into EP matrix.

Findings

The dispersity of N, N-dimethylformamide (DMF) was the best stable suspension state when it was used as solvent instead of occurring sedimentation and agglomeration. Moreover, DMF was further confirmed as a suitable inert solvent for the dispersion of GO into EP according to the mechanical properties, insulation properties and thermal conductivity characterization.

Research limitations/implications

The dispersion of GO in solvents has already been researched, but the traditional solvents, such as alcohols and water, has shown their limitations with the increase of modification methods, which were not suitable for the modification environment such as cyanate graft modification. Therefore, it was very important to choose a kind of inert solvent for dissolving EP matrix and dispersing GO better.

Originality/value

Several inert solvents were used to disperse GO into EP, and the influence of different dispersing solvents on the adhesive was discussed through the analysis of the mechanical properties, insulation properties and thermal conductivity, which was due to explore the inert solvent suitable for GO dispersion.

Details

Pigment & Resin Technology, vol. 48 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 August 2019

Jeetendra Kumar Malav, Ramesh C. Rathod, Vipin Tandon and Awanikumar P. Patil

The purpose of this study is to improve the anticorrosion performance of low nickel stainless steel (AISI 201) in 3.5% NaCl by electroactive polyimide/copper oxide (EPI/CuO…

Abstract

Purpose

The purpose of this study is to improve the anticorrosion performance of low nickel stainless steel (AISI 201) in 3.5% NaCl by electroactive polyimide/copper oxide (EPI/CuO) composites coating.

Design/methodology/approach

Electroactive polyimide/copper oxide (EPI/CuO) composites were prepared by oxidative coupling polymerization followed by thermal imidization method.

Findings

The functional and structural properties of composites were characterized by X-ray diffraction, Fourier transmission infra-red and ultra violet-visible spectroscopy and the surface topography was characterized by field emission scanning electron microscope analysis and anticorrosion performance in 3.5 Wt.% NaCl was evaluated by electrochemical techniques. The obtained results of electrochemical techniques measurement indicated that the composites coated samples give better corrosion protection against attacking electrolyte.

Originality/value

The ever-increasing price of nickel (Ni) is driving the industries to use low-Ni austenitic stainless steels (ASSs). However, it exhibits relatively poor corrosion resistance as compared with conventional Cr-Ni ASSs. Nonetheless, its corrosion resistance can be enhanced by polymeric (electroactive polyimide [EPI]) coating. CuO particles exhibit the hydrophobic properties and can be used as inorganic filler to incorporate in EPI to further enhance the corrosion protection. The present research paper is beneficial for industries to use low-cost AISI 201, enhance its corrosion resistance and replace the use of costly conventional Cr-Ni ASSs.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1096

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 November 2010

George K. Stylios

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 18