Search results

1 – 10 of over 3000
Content available
72

Abstract

Details

Assembly Automation, vol. 26 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 January 2015

C.L. Yang, A. Mohammed, Y Mohamadou, T. I. Oh and M. Soleimani

The aim of this paper is to introduce and to evaluate the performance of a multiple frequency complex impedance reconstruction for fabric-based EIT pressure sensor. Pressure…

Abstract

Purpose

The aim of this paper is to introduce and to evaluate the performance of a multiple frequency complex impedance reconstruction for fabric-based EIT pressure sensor. Pressure mapping is an important and challenging area of modern sensing technology. It has many applications in areas such as artificial skins in Robotics and pressure monitoring on soft tissue in biomechanics. Fabric-based sensors are being developed in conjunction with electrical impedance tomography (EIT) for pressure mapping imaging. This is potentially a very cost-effective pressure mapping imaging solution in particular for imaging large areas. Fabric-based EIT pressure sensors aim to provide a pressure mapping image using current carrying and voltage sensing electrodes attached on the boundary of the fabric patch.

Design/methodology/approach

Recently, promising results are being achieved in conductivity imaging for these sensors. However, the fabric structure presents capacitive behaviour that could also be exploited for pressure mapping imaging. Complex impedance reconstructions with multiple frequencies are implemented to observe both conductivity and permittivity changes due to the pressure applied to the fabric sensor.

Findings

Experimental studies on detecting changes of complex impedance on fabric-based sensor are performed. First, electrical impedance spectroscopy on a fabric-based sensor is performed. Secondly, the complex impedance tomography is carried out on fabric and compared with traditional EIT tank phantoms. Quantitative image quality measures are used to evaluate the performance of a fabric-based sensor at various frequencies and against the tank phantom.

Originality/value

The paper demonstrates for the first time the useful information on pressure mapping imaging from the permittivity component of fabric EIT. Multiple frequency EIT reconstruction reveals spectral behaviour of the fabric-based EIT, which opens up new opportunities in exploration of these sensors.

Details

Sensor Review, vol. 35 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 March 2013

Iliya Tizhe Thuku, Mohd Fua'ad Rahmat, Norhaliza Abdul Wahab, Teimour Tajdari and Abdulrahamam Amuda Yusuf

Circular pipelines are mostly used for pneumatic conveyance in industrial processes. For optimum and efficient production in industries that use a pipeline for conveyance…

Abstract

Purpose

Circular pipelines are mostly used for pneumatic conveyance in industrial processes. For optimum and efficient production in industries that use a pipeline for conveyance, tomographic image of the transport particles is paramount. Sensing mechanism plays a vital role in process tomography. The purpose of this paper is to present a two‐dimensional (2‐D) model for sensing the characteristics of electrostatic sensors for electrical charge tomography system. The proposed model uses the finite‐element method.

Design/methodology/approach

The domain is discretized into discrete shapes, called finite elements, by using a MATLAB. Each of these elements is taken as image pixels, on which the electric charges carried by conveyed particles are transformed into equations. The charges' interaction and the sensors installed around the circumference, at the sensing zone of the conveying pipeline are related by the proposed model equations. A matrix compression technique was also introduced to solve the problem of unevenly sensing characteristics of the sensors due to elements' number's concentration. The model equations were used to simulate the modeled electrostatic charge distribution carried by the particles moving in the pipeline.

Findings

The simulated results show that the proposed sensors are highly sensitive to electrostatic charge at any position in the sensing zone, thereby making it a good candidate for tomographic image reconstruction.

Originality/value

Tomographic imaging using finite element method is found to be more accurate and reliable compared to linear and filtered back projection method.

Article
Publication date: 23 January 2009

Ruzairi Abdul Rahim, Chiam Kok Thiam, Jaysuman Pusppanathan and Yvette Shaan‐Li Susiapan

The purpose of this paper is to view the flow concentration of the flowing material in a pipeline conveyor.

Abstract

Purpose

The purpose of this paper is to view the flow concentration of the flowing material in a pipeline conveyor.

Design/methodology/approach

Optical tomography provides a method to view the cross sectional image of flowing materials in a pipeline conveyor. Important flow information such as flow concentration profile, flow velocity and mass flow rate can be obtained without the need to invade the process vessel. The utilization of powerful computer together with expensive data acquisition system (DAQ) as the processing device in optical tomography systems has always been a norm. However, the advancements in silicon fabrication technology nowadays allow the fabrication of powerful digital signal processors (DSP) at reasonable cost. This allows the technology to be applied in optical tomography system to reduce or even eliminate the need of personal computer and the DAQ. The DSP system was customized to control the data acquisition of 16 × 16 optical sensors (arranged in orthogonal projection) and 23 × 23 optical sensors (arranged in rectilinear projections). The data collected were used to reconstruct the cross sectional image of flowing materials inside the pipeline. In the developed system, the accuracy of the image reconstruction was increased by 12.5 per cent by using new hybrid image reconstruction algorithm.

Findings

The results proved that the data acquisition and image reconstruction algorithm is capable of acquiring accurate data to reconstruct cross sectional images with only little error compared to the expected measurements.

Originality/value

The DSP system was customized to control the data acquisition of 16 × 16 optical sensors (arranged in orthogonal projection) and 23 × 23 optical sensors (arranged in rectilinear projections).

Details

Sensor Review, vol. 29 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 June 2016

Chiew Loon Goh, Ruzairi Abdul Rahim and Mohd Hafiz Fazalul Rahiman

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively…

496

Abstract

Purpose

The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively and non-intrusively visualizing and monitoring gas-liquid multi-phase flow in process plants in making sure that the industrial system has high quality control. Process tomography is a developing measurement technology for industrial flow visualization.

Design/methodology/approach

A review of types of tomographic systems that have been widely researched especially in the application of gas-liquid flow within the past 10 years was conducted. The sensor system operating fundamentals and assessment of each tomography technology are discussed and explained in detail.

Findings

Potential future research on gas-liquid flow in a conducting vessel using ultrasonic tomography sensor system is addressed.

Originality/value

The authors would like to undertake that the above-mentioned manuscript is original, has not been published elsewhere, accepted for publication elsewhere or under editorial review for publication elsewhere and that my Institute’s Universiti Teknologi Malaysia representative is fully aware of this submission.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 October 2023

Wen Pin Gooi, Pei Ling Leow, Jaysuman Pusppanathan, Xian Feng Hor and Shahrulnizahani Mohammad Din

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed…

Abstract

Purpose

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed around a cylindrical chamber, the planar ECT sensor has been investigated for depth and defect detection. However, the planar ECT sensor has limited height and depth sensing capability due to its single-sided assessment with the use of only a single-plane design. The purpose of this paper is to investigate a dual-plane miniature planar 3D ECT sensor design using the 3 × 3 matrix electrode array.

Design/methodology/approach

The sensitivity map of dual-plane miniature planar 3D ECT sensor was analysed using 3D visualisation, the singular value decomposition and the axial resolution analysis. Then, the sensor was fabricated for performance analysis based on 3D imaging experiments.

Findings

The sensitivity map analysis showed that the dual-plane miniature planar 3D ECT sensor has enhanced the height sensing capability, and it is less ill-posed in 3D image reconstruction. The dual-plane miniature planar 3D ECT sensor showed a 28% improvement in reconstructed 3D image quality as compared to the single-plane sensor set-up.

Originality/value

The 3 × 3 matrix electrode array has been proposed to use only the necessary electrode pair combinations for image reconstruction. Besides, the increase in number of electrodes from the dual-plane sensor setup improved the height reconstruction of the test sample.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 September 2012

A. Yao and M. Soleimani

Electrical impedance measurement and imaging are techniques that are widely used in a range of applications. Electro‐conductive knitted structure is a major new development in…

1200

Abstract

Purpose

Electrical impedance measurement and imaging are techniques that are widely used in a range of applications. Electro‐conductive knitted structure is a major new development in wearable computing. The purpose of this paper is to carry out a preliminary investigation of applying electrical impedance analysis to predict the behavior of electro‐conductive knitted structure. This can potentially pave the way for a low‐cost solution for pressure mapping imaging.

Design/methodology/approach

Electrical impedance tomography (EIT) has been used as a mapping technique for deformation imaging in conductive knitted fabric. EIT is an imaging system used to generate a map of electrical conductivity. Pressure and deformation mapping scanner is being developed based on electrical conductivity imaging of the conductive area generated in a fabric. The results are presented using these new sensors with various deformations.

Findings

Experimental results show the feasibility of qualitative deformation imaging. In particular, it is promising that multiple deformations can be mapped using the proposed technique. The paper also demonstrates preliminary results regarding quantitative pressure and deformation mapping using EIT technique.

Research limitations/implications

The results presented in the paper are laboratory‐based experiments for proof of principle and will be evaluated in specific application areas in future.

Originality/value

The paper shows, for the first time, detection of multiple pressure points as well as quantifying the pressure map using the new imaging sensor. The sensor proposed here can be used for robotic touch sensing application, as well as some biomechanical observations.

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2430

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 February 2021

Hao Guo, Feng Ju, Ning Wang, Bai Chen, Xiaoyong Wei, Yaoyao Wang and Dan Wang

Continuum manipulators are often used in complex and narrow space in recent years because of their flexibility and safety. Vision is considered to be one of the most direct…

Abstract

Purpose

Continuum manipulators are often used in complex and narrow space in recent years because of their flexibility and safety. Vision is considered to be one of the most direct methods to obtain its spatial shape. However, with the improvement of the cooperation requirements of multiple continuum manipulators and the increase of space limitation, it is impossible to obtain the complete spatial shape information of multiple continuum manipulators only by several cameras.

Design/methodology/approach

This paper proposes a fusion method using inertial navigation sensors and cameras to reconstruct the shape of continuum manipulators in the whole workspace. The camera is used to obtain the position information, and the inertial navigation sensor is used to obtain the attitude information. Based on the above two information, the shape of the continuum manipulator is reconstructed by fitting Bézier curve.

Findings

The experiment result of single continuum manipulator shows that the cubic Bézier curves is applicable to curve fitting of variable curvature, the maximum fitting error is about 2 mm. Meanwhile, the experiment result shows that this method is not affected by obstacles and can still reconstruct the shape of the continuum manipulators in 3-D space by detecting the position and attitude information of the end.

Originality/value

According to the authors’ knowledge, this is the first study on spatial shape reconstruction of multiple continuum manipulators and the first study to introduce inertial navigation sensors and cameras into the field of shape reconstruction of multiple continuum manipulators in narrow space. This method is suitable for shape reconstruction of manipulator with variable curvature continuum manipulator. When the vision of multiple continuum manipulators is blocked by obstacles, the spatial shape can still be reconstructed only by exposing the end point. The structure is simple, but it has certain accuracy within a certain range.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 January 2010

Xiaohui Hu and Wuqiang Yang

The purpose of this paper is to present the sensing mechanism, design issues, performance evaluation and applications for planar capacitive sensors. In the context of…

4363

Abstract

Purpose

The purpose of this paper is to present the sensing mechanism, design issues, performance evaluation and applications for planar capacitive sensors. In the context of characterisation and imaging of a dielectric material under test (MUT), a systematic study of sensor modelling, features and design issues is needed. In addition, the influencing factors on sensitivity distribution, and the effect of conductivity on sensor performance need to be further studied for planar capacitive sensors.

Design/methodology/approach

While analytical methods can provide accurate solutions to sensors of simple geometries, numerical modelling is preferred to obtain sensor response to different design parameters and properties of MUT, and to derive the sensitivity distributions of various electrode designs. Several important parameters have been used to evaluate the response of the sensors in different sensing modes. The designs of different planar capacitive sensor arrays are presented and experimentally evaluated.

Findings

The response features and design guidelines for planar capacitive sensors in different sensing modes have been summarised, showing that the sensor in the transmission mode or the single‐electrode mode is suitable for material characterisation and imaging, while the sensor in the shunt mode is suitable for proximity/displacement measurement. The sensitivity distribution of the sensor depends largely on the geometry of the electrodes. Conductivity causes positive changes for the sensor in the transmission and single‐electrode mode, but negative changes for the sensor in the shunt mode. Experimental results confirm that sensing depths of the sensor arrays and the influence of buried conductor on capacitance measurements are in agreement with simulations.

Research limitations/implications

Experimental verification is needed when a sensor is designed.

Originality/value

This paper provides a comprehensive study for planar capacitive sensors in terms of sensor design, evaluation and applications.

Details

Sensor Review, vol. 30 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 3000