Search results

1 – 10 of 379
Open Access
Article
Publication date: 18 January 2022

Srinimalan Balakrishnan Selvakumaran and Daniel Mark Hall

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science…

1457

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science research approach. Current methods to create digital assets by capturing the state of existing buildings can provide high accuracy but are time-consuming, expensive and difficult.

Design/methodology/approach

Using design science research, this research identifies the need for a crowdsourced and cloud-based approach to reconstruct digital building assets. The research then develops and tests a fully functional smartphone application prototype. The proposed end-to-end smartphone workflow begins with data capture and ends with user applications.

Findings

The resulting implementation can achieve a realistic three-dimensional (3D) model characterized by different typologies, minimal trade-off in accuracy and low processing costs. By crowdsourcing the images, the proposed approach can reduce costs for asset reconstruction by an estimated 93% compared to manual modeling and 80% compared to locally processed reconstruction algorithms.

Practical implications

The resulting implementation achieves “good enough” reconstruction of as-is 3D models with minimal tradeoffs in accuracy compared to automated approaches and 15× cost savings compared to a manual approach. Potential facility management use cases include the issue and information tracking, 3D mark-up and multi-model configurators.

Originality/value

Through user engagement, development, testing and validation, this work demonstrates the feasibility and impact of a novel crowdsourced and cloud-based approach for the reconstruction of digital building assets.

Details

Journal of Facilities Management , vol. 20 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 7 September 2015

Hubert Zangl and Stephan Mühlbacher-Karrer

The purpose of this paper is to reduce the artifacts in fast Bayesian reconstruction images in electrical tomography. This is in particular important with respect to object…

1051

Abstract

Purpose

The purpose of this paper is to reduce the artifacts in fast Bayesian reconstruction images in electrical tomography. This is in particular important with respect to object detection in electrical tomography applications.

Design/methodology/approach

The authors suggest to apply the Box-Cox transformation in Bayesian linear minimum mean square error (BMMSE) reconstruction to better accommodate the non-linear relation between the capacitance matrix and the permittivity distribution. The authors compare the results of the original algorithm with the modified algorithm and with the ground truth in both, simulation and experiments.

Findings

The results show a reduction of 50 percent of the mean square error caused by artifacts in low permittivity regions. Furthermore, the algorithm does not increase the computational complexity significantly such that the hard real time constraints can still be met. The authors demonstrate that the algorithm also works with limited observations angles. This allows for object detection in real time, e.g., in robot collision avoidance.

Originality/value

This paper shows that the extension of BMMSE by applying the Box-Cox transformation leads to a significant improvement of the quality of the reconstruction image while hard real time constraints are still met.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 23 November 2010

65

Abstract

Details

Circuit World, vol. 36 no. 4
Type: Research Article
ISSN: 0305-6120

Open Access
Article
Publication date: 5 April 2022

Yixiang Jiang

At airport security checkpoints, baggage screening is aimed to prevent transportation of prohibited and potentially dangerous items. Observing the projection images generated by…

Abstract

Purpose

At airport security checkpoints, baggage screening is aimed to prevent transportation of prohibited and potentially dangerous items. Observing the projection images generated by X-rays scanner is a critical method. However, when multiple objects are stacked on top of each other, distinguishing objects only by a two-dimensional picture is difficult, which prompts the demand for more precise imaging technology to be investigated for use. Reconstructing from 2D X-ray images to 3D-computed tomography (CT) volumes is a reliable solution.

Design/methodology/approach

To more accurately distinguish the specific contour shape of items when stacked, multi-information fusion network (MFCT-GAN) based on generative adversarial network (GAN) and U-like network (U-NET) is proposed to reconstruct from two biplanar orthogonal X-ray projections into 3D CT volumes. The authors use three modules to enhance the reconstruction qualitative and quantitative effects, compared with the original network. The skip connection modification (SCM) and multi-channels residual dense block (MRDB) enable the network to extract more feature information and learn deeper with high efficiency; the introduction of subjective loss enables the network to focus on the structural similarity (SSIM) of images during training.

Findings

On account of the fusion of multiple information, MFCT-GAN can significantly improve the value of quantitative indexes and distinguish contour explicitly between different targets. In particular, SCM enables features more reasonable and accurate when expanded into three dimensions. The appliance of MRDB can alleviate problem of slow optimization during the late training period, as well as reduce the computational cost. The introduction of subjective loss guides network to retain more high-frequency information, which makes the rendered CT volumes clearer in details.

Originality/value

The authors' proposed MFCT-GAN is able to restore the 3D shapes of different objects greatly based on biplanar projections. This is helpful in security check places, where X-ray images of stacked objects need to be distinguished from the presence of prohibited objects. The authors adopt three new modules, SCM, MRDB and subjective loss, as well as analyze the role the modules play in 3D reconstruction. Results show a significant improvement on the reconstruction both in objective and subjective effects.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 25 July 2019

Juliana Padilha Leitzke and Hubert Zangl

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such…

931

Abstract

Purpose

This paper aims to present an approach based on electrical impedance tomography spectroscopy (EITS) for the determination of water and ice fraction in low-power applications such as autarkic wireless sensors, which require a low computational complexity reconstruction approach and a low number of electrodes. This paper also investigates how the electrode design can affect the reconstruction results in tomography.

Design/methodology/approach

EITS is performed by using a non-iterative method called optimal first order approximation. In addition to that, a planar electrode geometry is used instead of the traditional circular electrode geometry. Such a structure allows the system to identify materials placed on the region above the sensor, which do not need to be confined in a pipe. For the optimization, the mean squared error (MSE) between the reference images and the obtained reconstructed images was calculated.

Findings

The authors demonstrate that even with a low number of four electrodes and a low complexity reconstruction algorithm, a reasonable reconstruction of water and ice fractions is possible. Furthermore, it is shown that an optimal distribution of the sensor electrodes can help to reduce the MSE without any costs in terms of computational complexity or power consumption.

Originality/value

This paper shows through simulations that the reconstruction of ice and water mixtures is possible and that the electrode design is a topic of great importance, as they can significantly affect the reconstruction results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2421

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 7 August 2019

Markus Neumayer, Thomas Suppan and Thomas Bretterklieber

The application of statistical inversion theory provides a powerful approach for solving estimation problems including the ability for uncertainty quantification (UQ) by means of…

Abstract

Purpose

The application of statistical inversion theory provides a powerful approach for solving estimation problems including the ability for uncertainty quantification (UQ) by means of Markov chain Monte Carlo (MCMC) methods and Monte Carlo integration. This paper aims to analyze the application of a state reduction technique within different MCMC techniques to improve the computational efficiency and the tuning process of these algorithms.

Design/methodology/approach

A reduced state representation is constructed from a general prior distribution. For sampling the Metropolis Hastings (MH) Algorithm and the Gibbs sampler are used. Efficient proposal generation techniques and techniques for conditional sampling are proposed and evaluated for an exemplary inverse problem.

Findings

For the MH-algorithm, high acceptance rates can be obtained with a simple proposal kernel. For the Gibbs sampler, an efficient technique for conditional sampling was found. The state reduction scheme stabilizes the ill-posed inverse problem, allowing a solution without a dedicated prior distribution. The state reduction is suitable to represent general material distributions.

Practical implications

The state reduction scheme and the MCMC techniques can be applied in different imaging problems. The stabilizing nature of the state reduction improves the solution of ill-posed problems. The tuning of the MCMC methods is simplified.

Originality/value

The paper presents a method to improve the solution process of inverse problems within the Bayesian framework. The stabilization of the inverse problem due to the state reduction improves the solution. The approach simplifies the tuning of MCMC methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 26 June 2009

364

Abstract

Details

Sensor Review, vol. 29 no. 3
Type: Research Article
ISSN: 0260-2288

Content available
Article
Publication date: 1 December 2000

George K. Stylios

329

Abstract

Details

International Journal of Clothing Science and Technology, vol. 12 no. 5
Type: Research Article
ISSN: 0955-6222

Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 379