Search results

1 – 10 of over 3000
Article
Publication date: 23 August 2019

Shenlong Wang, Kaixin Han and Jiafeng Jin

In the past few decades, the content-based image retrieval (CBIR), which focuses on the exploration of image feature extraction methods, has been widely investigated. The term of…

Abstract

Purpose

In the past few decades, the content-based image retrieval (CBIR), which focuses on the exploration of image feature extraction methods, has been widely investigated. The term of feature extraction is used in two cases: application-based feature expression and mathematical approaches for dimensionality reduction. Feature expression is a technique of describing the image color, texture and shape information with feature descriptors; thus, obtaining effective image features expression is the key to extracting high-level semantic information. However, most of the previous studies regarding image feature extraction and expression methods in the CBIR have not performed systematic research. This paper aims to introduce the basic image low-level feature expression techniques for color, texture and shape features that have been developed in recent years.

Design/methodology/approach

First, this review outlines the development process and expounds the principle of various image feature extraction methods, such as color, texture and shape feature expression. Second, some of the most commonly used image low-level expression algorithms are implemented, and the benefits and drawbacks are summarized. Third, the effectiveness of the global and local features in image retrieval, including some classical models and their illustrations provided by part of our experiment, are analyzed. Fourth, the sparse representation and similarity measurement methods are introduced, and the retrieval performance of statistical methods is evaluated and compared.

Findings

The core of this survey is to review the state of the image low-level expression methods and study the pros and cons of each method, their applicable occasions and certain implementation measures. This review notes that image peculiarities of single-feature descriptions may lead to unsatisfactory image retrieval capabilities, which have significant singularity and considerable limitations and challenges in the CBIR.

Originality/value

A comprehensive review of the latest developments in image retrieval using low-level feature expression techniques is provided in this paper. This review not only introduces the major approaches for image low-level feature expression but also supplies a pertinent reference for those engaging in research regarding image feature extraction.

Article
Publication date: 25 January 2018

Hima Bindu and Manjunathachari K.

This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial…

Abstract

Purpose

This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial recognition (FR) systems play a vital part in several applications such as surveillance, access control and image understanding. Accordingly, various face recognition methods have been developed in the literature, but the applicability of these algorithms is restricted because of unsatisfied accuracy. So, the improvement of face recognition is significantly important for the current trend.

Design/methodology/approach

This paper proposes a face recognition system through feature extraction and classification. The proposed model extracts the local and the global feature of the image. The local features of the image are extracted using the kernel based scale invariant feature transform (K-SIFT) model and the global features are extracted using the proposed m-Co-HOG model. (Co-HOG: co-occurrence histograms of oriented gradients) The proposed m-Co-HOG model has the properties of the Co-HOG algorithm. The feature vector database contains combined local and the global feature vectors derived using the K-SIFT model and the proposed m-Co-HOG algorithm. This paper proposes a probabilistic neuro-fuzzy classifier system for the finding the identity of the person from the extracted feature vector database.

Findings

The face images required for the simulation of the proposed work are taken from the CVL database. The simulation considers a total of 114 persons form the CVL database. From the results, it is evident that the proposed model has outperformed the existing models with an improved accuracy of 0.98. The false acceptance rate (FAR) and false rejection rate (FRR) values of the proposed model have a low value of 0.01.

Originality/value

This paper proposes a face recognition system with proposed m-Co-HOG vector and the hybrid neuro-fuzzy classifier. Feature extraction was based on the proposed m-Co-HOG vector for extracting the global features and the existing K-SIFT model for extracting the local features from the face images. The proposed m-Co-HOG vector utilizes the existing Co-HOG model for feature extraction, along with a new color gradient decomposition method. The major advantage of the proposed m-Co-HOG vector is that it utilizes the color features of the image along with other features during the histogram operation.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 May 2014

Zhijie Wen, Junjie Cao, Xiuping Liu and Shihui Ying

Fabric defects detection is vital in the automation of textile industry. The purpose of this paper is to develop and implement a new fabric defects detection method based on…

Abstract

Purpose

Fabric defects detection is vital in the automation of textile industry. The purpose of this paper is to develop and implement a new fabric defects detection method based on adaptive wavelet.

Design/methodology/approach

Fabric defects can be regarded as the abrupt features of textile images with uniform background textures. Wavelets have compact support and can represent these textures. When there is an abrupt feature existed, the response is totally different with the response of the background textures, so wavelets can detect these abrupt features. This method designs the appropriate wavelet bases for different fabric images adaptively. The defects can be detected accurately.

Findings

The proposed method achieves accurate detection of fabric defects. The experimental results suggest that the approach is effective.

Originality/value

This paper develops an appropriate method to design wavelet filter coefficients for detecting fabric defects, which is called adaptive wavelet. And it is helpful to realize the automation of textile industry.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 23 August 2013

Li Hong‐jun, Hu Wei, Xie Zheng‐guang and Wang Wei

The paper aims to do some further research on grey relational analysis applied in wavelet transform, and proposed a grey relational threshold algorithm for image denoising. This…

Abstract

Purpose

The paper aims to do some further research on grey relational analysis applied in wavelet transform, and proposed a grey relational threshold algorithm for image denoising. This study tries to suppress the noise while retaining the edges and important structures as much as possible.

Design/methodology/approach

The paper analyzed the characters of noises and edges distribution in different subbands; then used the grey relational value to calculate the relationship of scale, direction and noise deviation. This paper used the grey relational value of scale, direction and noise deviation as influenced factors, and proposed a grey relational threshold algorithm.

Findings

Grey relational analysis used in threshold setting has the superiority in image denoising. The simulation results have already certified both in visual effect and peak signal to noise ratio (PSNR).

Originality/value

This paper applied grey relation theory into image denoising, and proposed a grey relational threshold algorithm. It provides a novel method for image denoising.

Details

Grey Systems: Theory and Application, vol. 3 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 27 March 2009

Manuel Ferreira, Cristina Santos and Joao Monteiro

The purpose of this paper is to propose a set of techniques, in the domain of texture analysis, dedicated to the classification of industrial textures. One of the main purposes…

Abstract

Purpose

The purpose of this paper is to propose a set of techniques, in the domain of texture analysis, dedicated to the classification of industrial textures. One of the main purposes was to deal with a high diversity of textures, including structural and highly random patterns.

Design/methodology/approach

The global system includes a texture segmentation phase and a classification phase. The approach for image texture segmentation is based on features extracted from wavelets transform, fuzzy spectrum and interaction maps. The classification architecture uses a fuzzy grammar inference system.

Findings

The classifier uses the aggregation of features from the several segmentation techniques, resulting in high flexibility concerning the diversity of industrial textures. The resulted system allows on‐line learning of new textures. This approach avoids the need for a global re‐learning of the all textures each time a new texture is presented to the system.

Practical implications

These achievements demonstrate the practical value of the system, as it can be applied to different industrial sectors for quality control operations.

Originality/value

The global approach was integrated in a cork vision system, leading to an industrial prototype that has already been tested. Similarly, it was tested in a textile machine, for a specific fabric inspection, and gave results that corroborate the diversity of possible applications. The segmentation procedure reveals good performance that is indicated by high classification rates, revealing good perspectives for full industrialization.

Details

Sensor Review, vol. 29 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 17 July 2020

Sheryl Brahnam, Loris Nanni, Shannon McMurtrey, Alessandra Lumini, Rick Brattin, Melinda Slack and Tonya Barrier

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex…

2284

Abstract

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 10 October 2007

Gang Wang, Zhi‐feng Zhang, Yu‐jun Huang, Ying‐lu Zhao, Liang Xiao and An‐zhi He

This paper aims to provide an improved multifractal method to extract the pavement cracks in the complicated background. Furthermore, the pavement surface images with or without…

2045

Abstract

Purpose

This paper aims to provide an improved multifractal method to extract the pavement cracks in the complicated background. Furthermore, the pavement surface images with or without crack can also be distinguished by this method.

Design/methodology/approach

The framework of analyzing the image singularity is based on the sub‐pixel multifractal measure (SPMM). Performing the SPMM can give the sub‐pixel local distribution of the image gradient and a more precise singularity exponent distribution in the image. Meantime, using the singularity exponents and the most singular manifold (MSM), the image can be decomposed into a series of sets with different statistical and physical properties automatically and easily. One can extract the cracks according to the MSM.

Findings

The example shows that the physical and geometrical properties of the pavement images can be obtained by analyzing the distribution of singularity exponents and the greatest singularity exponent. The simulation results show that the SPMM has higher quality factor in the image edge detection. And the MSM detected this way reflects the most important information of the image.

Originality/value

Performing the SPMM can give a more precise singularity exponent distribution in the image.

Details

Engineering Computations, vol. 24 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 March 2007

B. Pradhan, K. Sandeep, Shattri Mansor, Abdul Rahman Ramli and Abdul Rashid B. Mohamed Sharif

In GIS applications for a realistic representation of a terrain a great number of triangles are needed that ultimately increases the data size. For online GIS interactive programs…

Abstract

Purpose

In GIS applications for a realistic representation of a terrain a great number of triangles are needed that ultimately increases the data size. For online GIS interactive programs it has become highly essential to reduce the number of triangles in order to save more storing space. Therefore, there is need to visualize terrains at different levels of detail, for example, a region of high interest should be in higher resolution than a region of low or no interest. Wavelet technology provides an efficient approach to achieve this. Using this technology, one can decompose a terrain data into hierarchy. On the other hand, the reduction of the number of triangles in subsequent levels should not be too small; otherwise leading to poor representation of terrain.

Design/methodology/approach

This paper proposes a new computational code (please see Appendix for the flow chart and pseudo code) for triangulated irregular network (TIN) using Delaunay triangulation methods. The algorithms have proved to be efficient tools in numerical methods such as finite element method and image processing. Further, second generation wavelet techniques popularly known as “lifting schemes” have been applied to compress the TIN data.

Findings

A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub‐triangles and the elevation step has been used to “modify” the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets.

Originality/value

A new algorithm for second generation wavelet compression has been proposed for TIN data compression. The quality of geographical surface representation after using proposed technique is compared with the original terrain. The results show that this method can be used for significant reduction of data set.

Details

Engineering Computations, vol. 24 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 June 2012

Qiuping Wang, Tiepeng Wang and Ke Zhang

Image edge detection is an essential issue in image processing and computer vision. The purpose of this paper is to provide a novel and effective algorithm for image edge…

Abstract

Purpose

Image edge detection is an essential issue in image processing and computer vision. The purpose of this paper is to provide a novel and effective algorithm for image edge detection.

Design/methodology/approach

Because GM (1,1) model is a typical model for tendency analysis, GM (1,1) model can be used for detecting edge. Prediction image data are close to the original image data by reason of the data being smooth in the non‐edge zone of image. The principle of edge detection by GM (1,1) model is that the predicted value at an edge point will be an overestimate or underestimate owing to the data changing drastically in the edge zone of the image. First, the edge image information is obtained by a preprocessed image subtracting from prediction image via GM (1,1). Second, median filter is used to eliminate isolated point noise in edge information images, and discrete wavelet transform is used to extract the image edge. Finally, this paper verifies the proposed algorithm by experiment.

Findings

Experimental results show that the proposed algorithm has advantages such as precisely locating, abundant weak edge, and better anti‐noise performance.

Practical implications

The algorithm proposed in the paper can precisely detect the information of edge image, and get a clear image detail.

Originality/value

Grey system theory developed vigorously lays the foundation for image processing. Wavelet analysis in image processing has its characteristics. This paper combines grey prediction model with discrete wavelet transform (DWT) successfully and obtains a novel and effective algorithm for image edge detection.

Details

Kybernetes, vol. 41 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 March 2020

Chunlei Li, Chaodie Liu, Zhoufeng Liu, Ruimin Yang and Yun Huang

The purpose of this paper is to focus on the design of automated fabric defect detection based on cascaded low-rank decomposition and to maintain high quality control in textile…

Abstract

Purpose

The purpose of this paper is to focus on the design of automated fabric defect detection based on cascaded low-rank decomposition and to maintain high quality control in textile manufacturing.

Design/methodology/approach

This paper proposed a fabric defect detection algorithm based on cascaded low-rank decomposition. First, the constructed Gabor feature matrix is divided into a low-rank matrix and sparse matrix using low-rank decomposition technique, and the sparse matrix is used as priori matrix where higher values indicate a higher probability of abnormality. Second, we conducted the second low-rank decomposition for the constructed texton feature matrix under the guidance of the priori matrix. Finally, an improved adaptive threshold segmentation algorithm was adopted to segment the saliency map generated by the final sparse matrix to locate the defect regions.

Findings

The proposed method was evaluated on the public fabric image databases. By comparing with the ground-truth, the average detection rate of 98.26% was obtained and is superior to the state-of-the-art.

Originality/value

The cascaded low-rank decomposition was first proposed and applied into the fabric defect detection. The quantitative value shows the effectiveness of the detection method. Hence, the proposed method can be used for accurate defect detection and automated analysis system.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 3000