Search results

1 – 10 of over 1000
Article
Publication date: 17 October 2018

Jingcheng Fu, Jun Huang, Li-Bo Wang and Lei Song

The purpose of this paper is to propose an identification method of acquiring aircraft mode characteristics based on fast Fourier transform and half-power bandwidth method, aiming…

Abstract

Purpose

The purpose of this paper is to propose an identification method of acquiring aircraft mode characteristics based on fast Fourier transform and half-power bandwidth method, aiming at the common oscillation met in flight test.

Design/methodology/approach

The feasibility of this method is demonstrated through derivation; the robustness analysis is conducted through three examples, and finally the method was applied on a set of sideslip angle record from flight test.

Findings

The derivation and numerical analysis both show that the presented method can have high accuracy and good robustness under coupled mode and noise condition.

Practical implications

The method proposed is of robustness, and it is concise and easy to apply on flight data record.

Originality/value

This paper demonstrates the feasibility of half power bandwidth to be applied on oscillation mode characteristics identification from flight data record, which is different from other method applied.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2017

Kamran Pazand and A.S. Nobari

This paper aims to present a new approach to the fast determination of the effective, dynamic, mechanical properties of an adhesive for linear and nonlinear regions of the…

Abstract

Purpose

This paper aims to present a new approach to the fast determination of the effective, dynamic, mechanical properties of an adhesive for linear and nonlinear regions of the adhesive response, for both healthy and damaged states of the bond.

Design/methodology/approach

The proposed approach is based on the measurement of the linear and nonlinear frequency response function (FRF) of adhesive-bonded structure and using artificial neural network identification technique. For this purpose, linear and nonlinear FRFs are measured for several single-lap joint specimens that are fabricated in healthy and damaged configurations of the bond. The measured FRFs of healthy and damaged specimens are then used to identify the natural frequencies of the specimens. The experimental natural frequencies, in turn, would be used to train artificial neural network (ANN) which would be able to predict the effective Young’s and shear moduli and damping of adhesive in healthy and damaged specimens, for any given excitation level and frequency, within the training domain.

Findings

Simultaneous identification of the effective mechanical properties of adhesive for linear and nonlinear response regions, as well as healthy and damages states of the adhesive bond.

Practical implications

The introduced method is effective to model the assembled structures with the viscoelastic adhesive joints, for linear and nonlinear regions.

Originality/value

A fast methodology, using ANN, for identification the effective mechanical properties of adhesives, compared to other methods for both linear and nonlinear regions.

Article
Publication date: 18 April 2023

R. Anish and K. Shankar

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints…

Abstract

Purpose

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.

Design/methodology/approach

A parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.

Findings

The errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.

Originality/value

In this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.

Article
Publication date: 2 October 2017

Majeed Mohamed

The purpose of this paper is to identify the flexible aircraft model accurately from the frequency responses.

Abstract

Purpose

The purpose of this paper is to identify the flexible aircraft model accurately from the frequency responses.

Design/methodology/approach

The frequency domain output error method is used to estimate the aerodynamic (rigid body and elastic body) derivatives, and mode shape parameters in the process of identification of flexible aircraft model. The accurate identification of lightly damped low frequency rigid-body response modes requires a careful selection of the frequency sweep length and the fast Fourier transform (FFT) window size, as the FFT window length cannot be longer than any individual sweep records. To address this issue, an effort is made to derive the FFT window length for the application of frequency domain estimation approach.

Findings

The investigations are initially made to select a suitable FFT window size for the accurate identification of the lightly damped low frequency rigid-body response modes of the flexible aircraft. Subsequently, frequency domain estimation approach is applied to simulated data of flexible aircraft. Besides the stability and control derivatives, the structural modes of the flexible aircraft are also estimated as part of state space model identification, and it is shown that all the model parameter estimates are accurate. Identification of such flexible aircraft aerodynamic (rigid body and elastic body) derivatives and structural mode shape parameters will lead to mathematical models of flexible aircraft that are accurate over a wide frequency range. The identified models are validated using the time response of frequency sweep data.

Research limitations/implications

Aircraft system identification is an integral part of aerospace system design and life cycle process. This becomes a complex process when the aircraft has significant effects of flexibility on the flight dynamics, especially as the frequencies of the elastic modes become lower and approach those of the rigid body modes. Thus, an integrated mathematical model of flexible aircraft is required to develop, and it should be valid for a wide frequency range and relevant for the design of flight control system.

Originality/value

This paper focuses on the application of frequency domain approach to identify the valid model of flexible aircraft by estimating the aerodynamic (rigid body and elastic body) derivatives and structural mode shape parameters of flexible aircraft. The unknown frequencies of structural modes are also able to identify accurately in frequency domain. This gives more value addition to analyze the flight data of flexible aircraft, as it is challenging problem in parameter estimation of flexible aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 December 2017

K. Shankar and N. Jinesh

The purpose of this paper is to provide an effective and simple technique for structural parameter identification, particularly to identify multiple cracks in a structure using…

Abstract

Purpose

The purpose of this paper is to provide an effective and simple technique for structural parameter identification, particularly to identify multiple cracks in a structure using simultaneous measurement of acceleration responses and voltage signals from PZT patches which is a multidisciplinary approach. A hybrid element constituted of one-dimensional beam element and a PZT sensor is used with reduced material properties which is very convenient for beams and is a novel application for inverse problems.

Design/methodology/approach

Multi-objective formulation is used whereby structural parameters are identified by minimizing the deviation between the predicted and measured values from the PZT patch and acceleration responses, when subjected to excitation. In the proposed method, a patch is attached to either end of the fixed beam. Using particle swarm optimization algorithm, normalized fitness functions are defined for both voltage and acceleration components with weighted aggregation multi-objective optimization technique. The signals are polluted with 5 percent Gaussian noise to simulate experimental noise. The effects of various weighting factors for the combined objective function are studied. The scheme is also experimentally validated by identification of cracks in a fixed-fixed beam.

Findings

The numerical and experimental results shows that significant improvement in accuracy of damage detection is achieved by the combined multidisciplinary method, when compared with only voltage or only acceleration-matching method as well as with other methods.

Originality/value

The proposed multidisciplinary crack identification approach, which is based on one-dimensional PZT patch model as well as conventional acceleration method, is not reported in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 July 2010

A. Caignot, P. Ladevèze, D. Néron and J.‐F. Durand

The purpose of this paper is to propose a virtual testing strategy in order to predict damping due to the joints which are present in the ARIANE 5 launcher.

Abstract

Purpose

The purpose of this paper is to propose a virtual testing strategy in order to predict damping due to the joints which are present in the ARIANE 5 launcher.

Design/methodology/approach

Since engineering finite element codes do not give satisfactory results, either because they are too slow or because they cannot calculate dissipation accurately, a new computational tool is introduced based on the LArge Time INcrement (LATIN) method in its multiscale version.

Findings

The capabilities of the new strategy are illustrated on one of the joints of ARIANE 5. The damping predicted virtually is compared to experimental results, and the approach appears promising.

Originality/value

The tool which has been developed gives access to calculations which were previously unaffordable with standard computational codes, which may improve the design process of launchers. The code is transferred into ASTRIUM‐ST, where it is being used to build a database of dissipations in the joints of the ARIANE 5 launcher.

Details

Engineering Computations, vol. 27 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 March 2021

Yudong Zhang, Leiying He and Chuanyu Wu

The purpose of this paper is to study the preload range of tendon-driven manipulator and the relationship between preload and damping. The flexible joint manipulator (FJM) with…

Abstract

Purpose

The purpose of this paper is to study the preload range of tendon-driven manipulator and the relationship between preload and damping. The flexible joint manipulator (FJM) with joint flexibility is safer than traditional rigid manipulators. A FJM having an elastic tendon is called an elastic tendon-driven manipulator (ETDM) and has the advantages of being driven by a cable and having a more flexible joint. However, the elastic tendon introduces greater residual vibration, which makes the control of the manipulator more difficult. Accurate dynamic modeling is effective in solving this problem.

Design/methodology/approach

The present paper derives the relationship between the preload of the ETDM and the friction moment through the analysis of the forces of cables and pulleys. A dynamic model dominated by Coulomb damping is established.

Findings

The linear relationship between a decrease in the damping moment of the system and an increase in the ETDM preload is verified by mechanics analysis and experiment, and a curve of the relationship is obtained. This study provides a reference for the selection of ETDM preload.

Originality/value

The method to identify ETDM damping by vibration attenuation experiments is proposed, which is helpful to obtain a more accurate dynamic model of the system and to achieve accurate control and residual vibration suppression of ETDM.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 July 2018

Mahmoud Hammou, Ahmed Bouzidane, Marc Thomas, Aboubakeur Benariba and Mohamed Bouzit

The purpose of this study is to examine the dynamic performance of an orifice-compensated three-pad hydrostatic squeeze film damper.

Abstract

Purpose

The purpose of this study is to examine the dynamic performance of an orifice-compensated three-pad hydrostatic squeeze film damper.

Design/methodology/approach

A numerical model has been developed and presented to study the effect of eccentricity ratio and pressure ratio on the static and dynamic characteristics of an orifice-compensated three-pad hydrostatic squeeze film damper. It is assumed that the fluid flow is incompressible, laminar, isothermal and steady-state. The finite difference method has been used to solve Reynolds equation governing the lubricant flow in film thickness of hydrostatic bearing. The numerical results obtained are discussed, analyzed and compared between three- and four-lobe hydrostatic journal bearings available in the literature.

Findings

It was found that the influence of eccentricity ratio on dynamic characteristics of an orifice-compensated three-pad hydrostatic squeeze film damper appears to be essentially controlled by the concentric pressure ratio. It was also found that the three-pad hydrostatic squeeze film damper has higher stiffness than three and four-lobe hydrostatic journal bearings.

Originality/value

In fact, the results obtained show that this type of hydrostatic squeeze film damper provides hydrostatic designers a new bearing configuration suitable to control rotor vibrations.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 May 2014

Chun Pong Sing, P.E.D. Love and P.R. Davis

Condition assessment on reinforced concrete (RC) structures is one of the critical issues as a result of structure degradation due to aging in many developed countries. The…

Abstract

Purpose

Condition assessment on reinforced concrete (RC) structures is one of the critical issues as a result of structure degradation due to aging in many developed countries. The purpose of this paper is to examine the sensitivity and reliability of the conventional dynamic response approaches, which are currently applied in the RC structures. The key indicators include: natural frequency and damping ratio. To deal with the non-linear characteristics of RC, the concept of random decrement is applied to analyze time domain data and a non-linear damping curve could be constructed to reflect the condition of RC structure.

Design/methodology/approach

A full-scale RC structure was tested under ambient vibration and the impact from a rubber hammer. Time history data were collected to analyze dynamics parameters such as natural frequency and damping ratio.

Findings

The research demonstrated that the measured natural frequency is not a good indicator for integrity assessment. Similarly, it was revealed that the traditional theory of viscous damping performed poorly for the RC with non-linear characteristics. To address this problem, a non-linear curve is constructed using random decrement and it can be used to retrieve the condition of the RC structure in a scientific manner.

Originality/value

The time domain analysis using random decrement can be used to construct a non-linear damping curve. The results from this study revealed that the damage of structure can be reflected from the changes in the damping curves. The non-linear damping curve is a powerful tool for assessing the health condition of RC structures in terms of sensitivity and reliability.

Details

Structural Survey, vol. 32 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

1 – 10 of over 1000