Search results

1 – 10 of 125
Article
Publication date: 8 May 2009

G.C. Pesenti and H. Boudinov

The purpose of this paper is to compare different junctions' parameters extraction models.

238

Abstract

Purpose

The purpose of this paper is to compare different junctions' parameters extraction models.

Design/methodology/approach

I‐V curves of p+n and pwelln diodes were measured. Five models for parameters extraction on I‐V characteristics of diodes in an educational poly‐Si gate pwell complementary metal oxide semiconductor (CMOS) technology were applied. The junctions' areas were 30 × 30 μm for the source‐body p+n junction of the PMOS transistor and 220 × 250 μm for the pwell‐body junction. The diodes were sintered in forming gas (10 percent of H2) in the temperature interval of 450‐525°C for times from 30 min up to 4 h.

Findings

It was shown that the best annealing regimes are different for both kinds of junctions.

Originality/value

The paper shows that the best annealing regime for p+n diodes (the lowest n and I0 values) is 450°C, 30 min and for the pwelln diodes (the lowest I0 values) is 525°C, 60 min. So, for the different kinds of junctions in one integrated circuit, different annealings could give the best parameters and the optimization depends on the specific characteristics of the developed technology.

Details

Microelectronics International, vol. 26 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 23 February 2015

M.R. Merad Boudia, A Cheknane and B Benyoucef

A numerical simulation study of a Tandem solar cell is presented. The parameters of single and two-diodes lumped-circuit model are usually the saturation current, the series…

Abstract

A numerical simulation study of a Tandem solar cell is presented. The parameters of single and two-diodes lumped-circuit model are usually the saturation current, the series resistance, the ideality factor, the shunt resistance and the photocurrent. It is found that the influence of the distributed series resistance on electrical characteristics can be described numerically by the application of the two models to Tandem organic solar cells. A description of the efficiency, fill factor, open circuit voltage and short circuit current on the devices are marked with series resistance, temperature and ideality factor. This approach allows one to obtain a set of parameters which is reasonable and representative of the physical system.

Details

World Journal of Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 April 2020

Azimah Omar, Muhamad Saipul Fakir, Khairus Syifa Hamdan, Nurul Hidayah Rased and Nasrudin Abd. Rahim

The purpose of this paper is to investigate the chemical, optical and photovoltaic properties of titanium dioxide/reduced graphene oxide (TiO2/rGO) photoanodes immersed in natural…

Abstract

Purpose

The purpose of this paper is to investigate the chemical, optical and photovoltaic properties of titanium dioxide/reduced graphene oxide (TiO2/rGO) photoanodes immersed in natural Roselle and synthetic (N719) dyes for dye-sensitized solar cell (DSSC) application.

Design/methodology/approach

TiO2 mixed with rGO were doctor-bladed on fluorine doped tin oxide (FTO) glass substrate. The chemical and optical properties of TiO2/rGO photoanodes immersed in Roselle and N719 dyes were characterized using Fourier-transformed infrared (FTIR) and ultraviolet–visible (UV–vis) spectroscopies, respectively. The DSSC’s photovoltaic performances were tested using Visiontec Solar I-V tester at standard illumination of AM1.5 and irradiance level of 100 mW/cm2.

Findings

The presence of anthocyanin dye from Roselle flower was detected at 604 nm and 718 nm. TiO2/rGO+Roselle dye sample revealed the smallest energy gap of 0.17 eV for ease of electron movement from valence band to conduction band. The TiO2/rGO-based DSSC fabricated with Roselle dye had a power conversion efficiency, ƞ of 0.743 per cent higher than TiO2/rGO photoanode sensitized with N719 dye (0.334 per cent). The obtained J-V curves were analyzed by a single-diode model of Lambert W-function and manual optimization to determine the internal electrical parameters of the DSSC. The average and uncertainty values of Jsc and ƞ were evaluated at different Rsh range of 1362 Ω to 32 k Ω.

Research limitations/implications

Rs values were kept constant during optimization work.

Originality/value

New ideality factor of TiO2/rGO-based DSSC was re-determined around 0.9995.

Details

Pigment & Resin Technology, vol. 49 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 January 2015

F. Aziz, Z. Ahmad, S.M. Abdullah, K. Sulaiman and M.H. Sayyad

The purpose of this paper is to study the optical and electrical characteristics of a single-junction solar cell based on a green-colour dye vanadyl 2,9,16, 23-tetraphenoxy-29H…

Abstract

Purpose

The purpose of this paper is to study the optical and electrical characteristics of a single-junction solar cell based on a green-colour dye vanadyl 2,9,16, 23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO). The use of soluble vanadyl phthalocyanine derivative makes it very attractive for photovoltaic applications due to its tunable properties and high solubility.

Design/methodology/approach

A photoactive layer of VOPcPhO has been sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes to produce a ITO/PEDOT:PSS/VOPcPhO/Al photovoltaic device. The VOPcPhO thin film is deposited by a simple spin coating technique. To obtain the optimal thickness for the solar cell device, different thicknesses of the photoactive layer, achieved by manipulating the spin rate, have been investigated.

Findings

The device exhibited photovoltaic effect with the values of Jsc, Voc and FF equal to 5.26 × 10-6 A/cm2, 0.621 V and 0.33, respectively. The electronic parameters of the cell have been obtained from the analysis of current-voltage characteristics measured in dark. The values of ideality factor and barrier height were found to be 2.69 and 0.416 eV, respectively. The optical examination showed that the material is sensitive to light in the UV region between 270 nm and 410 nm, as well as in the visible spectrum within the range of 630 nm and 750 nm.

Research limitations/implications

The solar cell based on a single layer of vanadyl phthalocyanine derivative results in low efficiency, which can be enhanced by introducing a variety of donor materials to form bulk heterojunction solar cells.

Practical implications

The spin coating technique provides a simple, less expensive and effective approach for preparing thin films.

Originality/value

A novel thin-film, single-junction organic solar cell, fabricated by using VOPcPhO, has been investigated for the first time ever. The vanadyl phthalocyanine derivative together with a donor material will have potential application for improved efficiency of the solar cells.

Article
Publication date: 3 November 2023

Bhanu Prakash Saripalli, Gagan Singh and Sonika Singh

Estimation of solar cell parameters, mathematical modeling and the actual performance analysis of photovoltaic (PV) cells at various ecological conditions are very important in…

Abstract

Purpose

Estimation of solar cell parameters, mathematical modeling and the actual performance analysis of photovoltaic (PV) cells at various ecological conditions are very important in the design and analysis of maximum power point trackers and power converters. This study aims to propose the analysis and modeling of a simplified three-diode model based on the manufacturer’s performance data.

Design/methodology/approach

A novel technique is presented to evaluate the PV cell constraints and simplify the existing equation using analytical and iterative methods. To examine the current equation, this study focuses on three crucial operational points: open circuit, short circuit and maximum operating points. The number of parameters needed to estimate these built-in models is decreased from nine to five by an effective iteration method, considerably reducing computational requirements.

Findings

The proposed model, in contrast to the previous complex nine-parameter three-diode model, simplifies the modeling and analysis process by requiring only five parameters. To ensure the reliability and accuracy of this proposed model, its results were carefully compared with datasheet values under standard test conditions (STC). This model was implemented using MATLAB/Simulink and validated using a polycrystalline solar cell under STC conditions.

Originality/value

The proposed three-diode model clearly outperforms the earlier existing two-diode model in terms of accuracy and performance, especially in lower irradiance settings, according to the results and comparison analysis.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 May 2015

F. Aziz, K. Sulaiman, Wissam Khayer Al-Rawi, Z. Ahmad, M.H. Sayyad, Kh. S. Karimov, L.L. Wei and M. Tahir

The purpose of this paper is to investigate the effect of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) on improvement of physical and electrical properties of vanadyl…

Abstract

Purpose

The purpose of this paper is to investigate the effect of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) on improvement of physical and electrical properties of vanadyl phthalocyanine derivative. The correlation between the physical characteristics of the active layers, comprising vanadyl 2,9,16, 23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO) and PCBM, and the electrical properties of metal/organic/metal devices have been studied. The use of soluble vanadyl phthalocyanine derivative makes it very attractive for a variety of applications due to its tunable properties and high solubility.

Design/methodology/approach

The sandwich type structures Al/VOPcPhO/Al and Al/VOPcPhO:PCBM/Al were fabricated by spin casting the active organic layers between the top and bottom (aluminum) electrodes. The stand-alone (VOPcPhO) and composite (VOPcPhO:PCBM) thin films were characterized by X-ray diffraction, atomic force microscopy, UV/Vis and Raman spectroscopy. The electronic properties of the metal/organic/metal devices were studied using current-voltage (I-V) characteristics in dark at room temperature.

Findings

The values of barrier height for Al/VOPcPhO/Al and Al/VOPcPhO:PCBM/Al devices were obtained from the forward bias I-V curves and were found to be 0.7 eV and 0.62 eV, respectively. The present study indicates that the device employing VOPcPhO:PCBM composite film as the active layer, with better structural and morphological characteristics, results in reduced barrier height at the metal-organic film interface as compared to the one fabricated with the stand-alone film.

Research limitations/implications

It is shown that doping VOPcPhO with PCBM improves the crystallinity, morphology and junction properties.

Practical implications

The spin coating technique provides a simple, less expensive and effective approach for preparing thin films. The soluble VOPcPhO is conveniently dissolved in a number of organic solvents.

Originality/value

The physical properties of the VOPcPhO:PCBM composite thin film and the electrical properties of the composite thin-film-based metal/organic/metal devices have not been reported in the literature, as far as our knowledge is concerned.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 January 2019

Chee Yong Fong, Sha Shiong Ng, NurFahana Mohd Amin, Fong Kwong Yam and Zainuriah Hassan

This study aims to explore the applicability of the sol-gel-derived GaN thin films for UV photodetection.

Abstract

Purpose

This study aims to explore the applicability of the sol-gel-derived GaN thin films for UV photodetection.

Design/methodology/approach

GaN-based ultraviolet (UV) photodetector with Pt Schottky contacts was fabricated and its applicability was investigated. The current-voltage (I-V) characteristics of the GaN-based UV photodetector under the dark current and photocurrent were measured.

Findings

The ideality factors of GaN-based UV photodetector under dark current and photocurrent were 6.93 and 5.62, respectively. While the Schottky barrier heights (SBH) for GaN-based UV photodetector under dark current and photocurrent were 0.35 eV and 0.34 eV, respectively. The contrast ratio and responsivity of this UV photodetector measured at 5 V were found to be 1.36 and 1.68 μA/W, respectively. The photoresponse as a function of time was measured by switching the UV light on and off continuously at different forward biases of 1, 3 and 6 V. The results showed that the fabricated UV photodetector has reasonable stability and repeatability.

Originality/value

This work demonstrated that GaN-based UV photodetector can be fabricated by using the GaN thin film grown by low-cost and simple sol-gel spin coating method.

Details

Microelectronics International, vol. 36 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 18 April 2008

L.S. Chuah, Z. Hassan and H. Abu Hassan

This paper aims to report on the use of radio frequency nitrogen plasma‐assisted molecular beam epitaxy (RF‐MBE) to grow high‐quality n‐type In0.47Ga0.53N/GaN on Si(111) substrate…

1976

Abstract

Purpose

This paper aims to report on the use of radio frequency nitrogen plasma‐assisted molecular beam epitaxy (RF‐MBE) to grow high‐quality n‐type In0.47Ga0.53N/GaN on Si(111) substrate using AlN as a buffer layer.

Design/methodology/approach

Structural analyses of the InGaN films were performed by using X‐ray diffraction, atomic force microscopy, and Hall measurement. Metal‐semiconductor‐metal (MSM) photodiode was fabricated on the In0.47Ga0.53N/Si(111) films. Electrical analysis of the MSM photodiodes was carried out by using current‐voltage (IV) measurements. Ideality factors and Schottky barrier heights for Ni/In0.47Ga0.53N, was deduced to be 1.01 and 0.60 eV, respectively.

Findings

The In0.47Ga0.53N MSM photodiode shows a sharp cut‐off wavelength at 840 nm. A maximum responsivity of 0.28 A/W was achieved at 839 nm. The detector shows a little decrease in responsivity from 840 to 200 nm. The responsivity of the MSM drops by nearly two orders of magnitude across the cut‐off wavelength.

Originality/value

Focuses on III‐nitride semiconductors, which are of interest for applications in high temperature/power electronic devices.

Details

Microelectronics International, vol. 25 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 August 2017

Mehran Shahryari, Mohammad Homayoon Shakib, Mohammad Bagher Askari, Shahryar Nanekarani, Sanaz Saeidi Nejad and Sedigheh Bagheri

The purpose of this paper is to demonstrate the existence of one suitable oxide phase concurrent with deposition for fabricating a titanium (Ti)/p-silicon (Si) Schottky diode by…

Abstract

Purpose

The purpose of this paper is to demonstrate the existence of one suitable oxide phase concurrent with deposition for fabricating a titanium (Ti)/p-silicon (Si) Schottky diode by direct current (DC) magnetron sputtering method.

Design/methodology/approach

In this paper, a Ti/p-Si Schottky diode has been fabricated by depositing a Ti film on p-Si substrate by DC magnetron sputtering. Electrical properties of a Schottky junction include three main parameters: ideality factor (n), series resistance (Rs) and barrier height (Φb), which were determined by three analysis methods: current–voltage (I-V), Cheung function and Norde function.

Findings

As result outcomes of the calculated values by three analysis methods, average values were obtained equal to 2.475, 27.07 kÙ and 0.88 ev. With comparing direct calculation of series resistance with the achieved average value of three analysis methods, it illustrates that without X-ray diffraction (XRD) analysis consideration, it’s possible to deduce at least one oxide phase forming on the Ti layer.

Originality/value

This work fabricates Ti/p-Si Schottky diode by DC magnetron sputtering. By use of downward-arch region of the LnI-V curve, two functions that are known as Norde and Cheung were made with which this study applies these functions and linear region of LnI-V plot each values of n, Φb and Rs, except n calculated two times. With comparison of calculated values from two parts of plot, it is clear that Norde and Cheung functions are accurate and the applied method is correct. Also, with direct calculation, the value of Rs and as compared with result from analysis, this study has proved that without XRD plot, certainly simultaneity deposition at least one oxide phase was forming on Ti layer.

Details

World Journal of Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 May 2009

L.S. Chuah, Z. Hassan, H. Abu Hassan, C.W. Chin, S.M. Thahab and S.C. Teoh

The purpose of this paper is to present the characteristics of novel silicon Schottky barrier (SB) photodiodes (PDs) with aluminium nitride (AlN) (100 nm) nucleation layer.

Abstract

Purpose

The purpose of this paper is to present the characteristics of novel silicon Schottky barrier (SB) photodiodes (PDs) with aluminium nitride (AlN) (100 nm) nucleation layer.

Design/methodology/approach

Comparison was made with conventional silicon SB PDs.

Findings

It was found that smaller dark current could be achieved with AlN nucleation layer. It was also found that effective SB height increased from 0.65 to 0.71 eV with the insertion of the AlN layer. The dark leakage current for the Schottky PDs with the AlN layer was shown to be about two orders of magnitude smaller than that for the conventional silicon SB PDs.

Research limitations/implications

It is possible that the detrimental effect of interface states situated near the metal semiconductor interface was less pronounced for the sample owing to the insertion of the AlN nucleation layer.

Originality/value

There is believed to be no other report on silicon SB PDs capped with an AlN layer in the literature. This paper describes the fabricated silicon SB PDs and reports on the electrical characteristics of the devices with an AlN nucleation layer grown at low temperature.

Details

Microelectronics International, vol. 26 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 125