Search results
1 – 2 of 2Zbigniew Bieniek, Ida Mascolo and Ada Amendola
This study aims to focus on a short review on recent results dealing with the mechanical modelling and experimental characterization of a novel class of tensegrity structures…
Abstract
Purpose
This study aims to focus on a short review on recent results dealing with the mechanical modelling and experimental characterization of a novel class of tensegrity structures, named class θ = 1 tensegrity prisms. The examined structures exhibit six bars connected by two disjoint sets of strings.
Design/methodology/approach
First, the self-equilibrium problem of tensegrity θ = 1 prisms is numerically investigated for varying values of two aspect parameters and, next, their prestress stability is studied. The mechanical behavior of the examined structures in the large displacements regime under uniform compression loading is also numerically computed through a path-following procedure. Finally, the predicted constitutive response is validated through experimental tests.
Findings
The presented results highlight that the examined structures exhibit a large number of infinitesimal mechanisms from the freestanding configuration, and reveal that they exhibit tunable elastic response switching from stiffening to softening.
Originality/value
This multi-faceted elastic response is in agreement with previous literature results on the elastic response of minimal tensegrity prism, and suggests that such units can be usefully used as non-linear springs in next-generation tensegrity metamaterials.
Details
Keywords
Ada Amendola, Ida Mascolo and Gianmario Benzoni
This paper aims to review recent literature results on the mechanical response of confined pentamode structures behaving either in the stretching-dominated or the…
Abstract
Purpose
This paper aims to review recent literature results on the mechanical response of confined pentamode structures behaving either in the stretching-dominated or the bending-dominated regimes.
Design/methodology/approach
The analyzed structures consist of multilayer systems formed by pentamode lattices alternated with stiffening plates and are equipped with rigid or hinged connections.
Findings
It is shown that such structures are able to carry unidirectional compressive loads with sufficiently high stiffness, while showing markedly low stiffness against shear loads. In particular, their shear stiffness may approach zero in the stretching-dominated regime.
Originality/value
The presented results highlight the high engineering potential of laminated pentamode metamaterials as novel isolation devices to be used for the protection of buildings against shear waves.
Details