Search results
1 – 1 of 1
This paper purposed a multi-facet sentiment analysis system.
Abstract
Purpose
This paper purposed a multi-facet sentiment analysis system.
Design/methodology/approach
Hence, This paper uses multidomain resources to build a sentiment analysis system. The manual lexicon based features that are extracted from the resources are fed into a machine learning classifier to compare their performance afterward. The manual lexicon is replaced with a custom BOW to deal with its time consuming construction. To help the system run faster and make the model interpretable, this will be performed by employing different existing and custom approaches such as term occurrence, information gain, principal component analysis, semantic clustering, and POS tagging filters.
Findings
The proposed system featured by lexicon extraction automation and characteristics size optimization proved its efficiency when applied to multidomain and benchmark datasets by reaching 93.59% accuracy which makes it competitive to the state-of-the-art systems.
Originality/value
The construction of a custom BOW. Optimizing features based on existing and custom feature selection and clustering approaches.
Details