Search results

1 – 9 of 9
Article
Publication date: 13 February 2023

Abdelraheem M. Aly and Noura Alsedais

This paper aims to investigate the conformable fractal approaches of unsteady natural convection in a partial layer porous H-shaped cavity suspended by nano-encapsulated phase…

Abstract

Purpose

This paper aims to investigate the conformable fractal approaches of unsteady natural convection in a partial layer porous H-shaped cavity suspended by nano-encapsulated phase change material (NEPCM) by the incompressible smoothed particle hydrodynamics method.

Design/methodology/approach

The partial hot sources with variable height L_Hot are in the H-cavity’s sides and center. The performed numerical simulations are obtained at the variations of the following parameters: source of hot length L_Hot = (0.4–1.6), conformable fractal parameter α (0.97–1), fusion temperature θf (0.05–0.9), thermal radiation parameter Rd (0–7), Rayleigh number Ra (103–106), Darcy parameter Da (10−2 to 10−5) and Hartmann number Ha (0–80).

Findings

The main outcomes showed the implication of hot source length L_Hot, Rayleigh number and fusion temperature in controlling the contours of a heat capacity within H-shaped cavity. The presence of a porous layer in the right zone of H-shaped cavity prevents the nanofluid flow within this area at lower Darcy parameter. An increment in the thermal radiation parameter declines the heat transfer and changes the heat capacity contours within H-shaped cavity. The velocity field is strongly enhanced by an augmentation on Rayleigh number. Increasing the Hartmann number shrinks the velocity field within H-shaped cavity.

Originality/value

The novelty of this work is solving the conformable fractal approaches of unsteady natural convection in a partial layer porous H-shaped cavity suspended by NEPCM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 June 2023

Noura Alsedais, Amal Al-Hanaya and Abdelraheem M. Aly

This paper aims to investigate magnetic impacts on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders. The annulus is filled by…

Abstract

Purpose

This paper aims to investigate magnetic impacts on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders. The annulus is filled by oxytactic microorganisms and nano-encapsulated phase change materials.

Design/methodology/approach

The modified ISPH method based on the time-fractional derivative is applied to solve the regulating equations in Lagrangian dimensionless forms. The pertinent factors are bioconvection Rayleigh number Rab (1–100), circular cylinder’s radius Rc (0.1–0.3), fractional time derivative α (0.95–1), Darcy parameter Da (10−5–10−2), nanoparticle parameter ϕ (0–0.1), Hartmann number Ha (0–50), Lewis number Le (1–20), Peclet number Pe (0.1–0.75), s (0.1–0.9), number of cylinders NCylinders (1–4), Rayleigh number Ra (103–106) and fusion temperature θf (0.005–0.9).

Findings

The simulations revealed that there is a strong enhancement in the velocity field according to an increase in Rab. The intensity and location of the phase zone change in response to changes in θf. The time-fractional derivative a acting on a nanofluid velocity and flow characteristics in an annulus. The number of embedded cylinders NCylinders is playing a significant role in the cooling processes and as NCylinders increases from 1 to 4, the velocity field’s maximum reduces by almost 33.3%.

Originality/value

The novelty of this study is examining the impacts of the magnetic field and the presence of several numbers of embedded cylinders on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 March 2024

Hillal M. Elshehabey, Andaç Batur Çolak and Abdelraheem Aly

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double…

Abstract

Purpose

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double diffusion inside a porous L-shaped cavity including two fins.

Design/methodology/approach

The ISPH method solves the nondimensional governing equations of a physical model. The ISPH simulations are attained at different Frank–Kamenetskii number, Darcy number, coupled Soret/Dufour numbers, coupled Cattaneo–Christov heat/mass fluxes, thermal radiation parameter and nanoparticle parameter. An artificial neural network (ANN) is developed using a total of 243 data sets. The data set is optimized as 171 of the data sets were used for training the model, 36 for validation and 36 for the testing phase. The network model was trained using the Levenberg–Marquardt training algorithm.

Findings

The resulting simulations show how thermal radiation declines the temperature distribution and changes the contour of a heat capacity ratio. The temperature distribution is improved, and the velocity field is decreased by 36.77% when the coupled heat Cattaneo–Christov heat/mass fluxes are increased from 0 to 0.8. The temperature distribution is supported, and the concentration distribution is declined by an increase in Soret–Dufour numbers. A rise in Soret–Dufour numbers corresponds to a decreasing velocity field. The Frank–Kamenetskii number is useful for enhancing the velocity field and temperature distribution. A reduction in Darcy number causes a high porous struggle, which reduces nanofluid velocity and improves temperature and concentration distribution. An increase in nanoparticle concentration causes a high fluid suspension viscosity, which reduces the suspension’s velocity. With the help of the ANN, the obtained model accurately predicts the values of the Nusselt and Sherwood numbers.

Originality/value

A novel integration between the ISPH method and the ANN is adapted to handle the heat and mass transfer within a new L-shaped geometry with fins in the presence of several physical effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2023

Hakan F. Oztop, Muhammed Gür, Fatih Selimefendigil and Hakan Coşanay

The purpose of this study is to do a numerical analysis of the jet to a body filled with phase change material (PCM). The melting of the PCM filled body was investigated by the…

Abstract

Purpose

The purpose of this study is to do a numerical analysis of the jet to a body filled with phase change material (PCM). The melting of the PCM filled body was investigated by the hot jet flow. Four different values of the Reynolds number were taken, ranging from 5 × 103 = Re = 12.5 103. Water, Al2O3 1%, Al2O3 2% and hybrid nanofluid (HNF; Al2O3–Ag mixture) were used as fluid types and the effects of fluid type on melting were investigated. At 60 °C, the jet stream was impinged on the PCM filled body at different Reynolds numbers.

Design/methodology/approach

Two-dimensional analysis of melting of PCM inserted A block via impinging turbulent slot jet is numerically studied. Governing equations for turbulent flow are solved by using the finite element method via analysis and system fluent R2020.

Findings

The obtained results showed that the best melting occurred when the Reynolds number increased and the HNF was used. However, the impacts of using alumina-water nanofluid were slight. At Re = 12,500, phase completion time was reduced by about 13.77% when HNF was used while this was only 3.93% with water + alumina nanofluid as compared to using only water at Re = 5,000. In future studies, HNF concentrations will change the type of nanoenhanced PCMs. In addition, the geometry and jet parameters of the PCM-filled cube can be changed.

Originality/value

Effects of impinging jet onto PCM filled block and control of melting via impinging hot jet of PCM. Thus, novelty of the work is to control of melting in a block by impinging hot jet and nanoparticles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2023

Kashif Irshad, Amjad Ali Pasha, Mohammed K. Al Mesfer, Mohd Danish, Manoj Kumar Nayak, Ali Chamkha and Ahmed M. Galal

The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention…

Abstract

Purpose

The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention because of the potential utilizations that they possess in modern industries, for example, heat exchangers, solar energy collectors and cooling of electronic apparatuses. This study aims to investigate the second law and thermal behavior of non-Newtonian double-diffusive natural convection (DDNC) of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by a magnetic field.

Design/methodology/approach

For the governing equations of the complicated and practical system with all considered parameters to be solved via a formidable numerical approach, the finite element method acts as an approach to achieving the desired solution. This method allows us to gain a detailed solution to the studied geometry.

Findings

This investigation has been executed for the considered parameters of range, such as power-law index, baffle length, Lewis number, buoyancy ratio, Hartmann number and Rayleigh number. The main results reveal that isothermal and concentration lines are significantly more distorted, indicating intensified concentration and temperature distributions because of the growth of baffle length (L). Nuave decreases by 8.4% and 0.8% while it enhances by 49.86% and 33.87%, respectively, because of growth in the L from 0.1 to 0.2 and 0.2 to 0.3.

Originality/value

Such a comprehensive study on the second law and thermal behavior of DDNC of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by magnetic field has not yet been carried out.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2022

Massicilia Dahmani, Abdelghani Seghir, Nabil Issaadi and Ouali Amiri

This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified…

Abstract

Purpose

This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified mechanical single-degree-of-freedom system allowing to reproduce the heave movements is first developed, then the obtained lumped characteristics are used for elastic analysis of the floating body in heave motion.

Design/methodology/approach

First, a two-dimensional numerical model of a rigid floating body in a wave tank is implemented under DualSPHysics, an open source computational fluid dynamics (CFD) code based on smoothed particle hydrodynamics method. Then, the obtained results are exploited to derive an equivalent mechanical mass-spring-damper model. Finally, estimated equivalent characteristics are used in a structural finite element modeling of the considered body assuming elastic behavior.

Findings

Obtained results concerning the floating body displacements are represented and validated using existing experimental data in the literature. Wave forces acting on the body are also evaluated. It was found that for regular waves, it is possible to replace the complex CFD refined model by an equivalent simplified mechanical system which makes easy the use of structural finite element analysis.

Originality/value

The originality of this work lies in the proposed procedure to evaluate the mechanical properties of the equivalent elastic system. This allows to couple two different software tools and to take advantages of their features.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 December 2022

Darya Loenko, Hakan F. Öztop and Mikhail A. Sheremet

Nowadays, the most important challenge in mechanical engineering, power engineering and electronics is a development of effective cooling systems for heat-generating units. Taking…

Abstract

Purpose

Nowadays, the most important challenge in mechanical engineering, power engineering and electronics is a development of effective cooling systems for heat-generating units. Taking into account this challenge, this study aims to deal with computational investigation of thermogravitational energy transport of pseudoplastic nanoliquid in an electronic chamber with a periodic thermally producing unit placed on the bottom heat-conducting wall of finite thickness under an influence of isothermal cooling from vertical side walls.

Design/methodology/approach

The control equations formulated using the Boussinesq approach, Ostwald–de Waele power law and single-phase nanofluid model with experimentally based correlations of Guo et al. for nanofluid dynamic viscosity and Jang and Choi for nanofluid thermal conductivity have been worked out by the in-house computational procedure using the finite difference technique. The impact of the Rayleigh number, nanoadditives concentration, frequency of the periodic heat generation from the local element and thickness of the bottom solid substrate on nanoliquid circulation and energy transport has been studied.

Findings

It has been found that a raise of the nanoadditives concentration intensifies the cooling of the heat-generating element, while a growth of the heat-generation frequency allows reducing the amplitude of the heater temperature.

Originality/value

Mathematical modeling of a pseudoplastic nanomaterial thermogravitational energy transport in an electronic cabinet with a periodic thermally generating unit, a heat-conducting substrate and isothermal cooling vertical surfaces to identify the possibility of intensifying heat removal from a heated surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2024

Sílvio Aparecido Verdério Júnior, Pedro J. Coelho and Vicente Luiz Scalon

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on…

Abstract

Purpose

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on the flow and the natural convection heat transfer process over isothermal plates.

Design/methodology/approach

This work is an extension and finalization of previous studies of the leading author. The numerical methodology was proposed and experimentally validated in previous studies. Using OpenFOAM® and other free and open-source numerical-computational tools, three-dimensional numerical models were built to simulate the flow and the natural convection heat transfer process over isothermal corrugation plates with variable and constant heights.

Findings

The influence of different geometric arrangements of corrugated plates on the flow and natural convection heat transfer over isothermal plates is investigated. The influence of the height ratio parameter, as well as the resulting concave and convex profiles, on the parameters average Nusselt number, corrected average Nusselt number and convective thermal efficiency gain, is analyzed. It is shown that the total convective heat transfer and the convective thermal efficiency gain increase with the increase of the height ratio. The numerical results confirm previous findings about the predominant effects on the predominant impact of increasing the heat transfer area on the thermal efficiency gain in corrugated surfaces, in contrast to the adverse effects caused on the flow. In corrugations with heights resulting in concave profiles, the geometry with triangular corrugations presented the highest total convection heat transfer, followed by trapezoidal and rectangular. For arrangements with the same area, it was demonstrated that corrugations of constant and variable height are approximately equivalent in terms of natural convection heat transfer.

Practical implications

The results allowed a better understanding of the flow characteristics and the natural convection heat transfer process over isothermal plates with corrugations of variable height. The advantages of the surfaces studied in terms of increasing convective thermal efficiency were demonstrated, with the potential to be used in cooling systems exclusively by natural convection (or with reduced dependence on forced convection cooling systems), including in technological applications of microelectronics, robotics, internet of things (IoT), artificial intelligence, information technology, industry 4.0, etc.

Originality/value

To the best of the authors’ knowledge, the results presented are new in the scientific literature. Unlike previous studies conducted by the leading author, this analysis specifically analyzed the natural convection phenomenon over plates with variable-height corrugations. The obtained results will contribute to projects to improve and optimize natural convection cooling systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2023

Wael Ahmed Elgharib

This study aims at testing efficiency of the Egyptian stock market at semi-strong level through exploring the impact of the COVID-19 outbreak on Egyptian stock returns.

Abstract

Purpose

This study aims at testing efficiency of the Egyptian stock market at semi-strong level through exploring the impact of the COVID-19 outbreak on Egyptian stock returns.

Design/methodology/approach

The author applied the “Event Study” method that addresses the impact of a particular event or group of events on stock returns, from 12 September 2019 to 5 April 2020, choosing Egyptian Stock Exchange (EGX) 100 companies which constitute constitutes the highest-level 100 companies in terms of liquidity and activity.

Findings

The study found inefficiency of the Egyptian stock market at the semistrong level, as the declaration of the COVID-19 has a negative insignificant effect on stock returns, whether on the day of the declaration, before or after it, The underlying reasons for these results can be referred to the idea that can be explained that investors are noise trading when making their investment decisions.

Research limitations/implications

There are two limitations to the interface of this paper. The first one is the short-term impact of COVID-19, using 141 days, and then it is not clear in the research the long-term impact of events related to the epidemic. Secondly, because the author deals with a short period term, the author does not test the characteristics of the company or any other major events that may affect the stock returns of the companies under study.

Originality/value

This adds to the finance literature on the impact of the COVID-19 announcement on stock returns in the context of African countries. The explanation of the interconnection of the COVID-19 announcement on stock returns in Egypt.

Details

African Journal of Economic and Management Studies, vol. 14 no. 3
Type: Research Article
ISSN: 2040-0705

Keywords

Access

Year

Last 12 months (9)

Content type

1 – 9 of 9