Search results

1 – 10 of 35
Article
Publication date: 1 April 2024

Laura Sierra-García, Nicolás Gambetta, Fernando Azcarate Llanes and María Antonia García Benau

This paper aims to examine whether the position of universities in the times higher education (THE) impact rankings (IR) is related to the different dimensions of academic quality…

Abstract

Purpose

This paper aims to examine whether the position of universities in the times higher education (THE) impact rankings (IR) is related to the different dimensions of academic quality of universities according to the THE world universities ranking.

Design/methodology/approach

The research, based on universities ranked in the top 100 of THE IRs, uses a regression model obtained by the panel data method, using the fixed effects approach, to identify the relationship of academic quality dimensions with that ranking.

Findings

The results show an increase in the dissemination of information on sustainable development goals (SDGs) by universities. In addition, it is shown that research, number of citations and international outlook are positively associated with a higher score obtained by universities in THE IRs, which implies a higher impact on the SDGs by these universities.

Originality/value

Based on multifaceted theories, the study highlighted the universities that are best positioned in the THE IRs in relation to their contribution to the SDGs.

Details

International Journal of Sustainability in Higher Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1467-6370

Keywords

Article
Publication date: 2 February 2023

Shanmugan Subramani and Mutharasu Devarajan

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested…

Abstract

Purpose

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested and reported. The purpose of this paper is suggesting thin film-based TIM to sustain the light-emiting diode (LED) performance and electronic device miniaturization.

Design/methodology/approach

Consequently, ZnO thin film at various thicknesses was prepared by chemical vapour deposition (CVD) method and tested their thermal behaviour using thermal transient analysis as solid TIM for high-power LED.

Findings

Low value in total thermal resistance (Rth-tot) was observed for ZnO thin film boundary condition than bare Al boundary condition. The measured interface (ZnO thin film) resistance {(Rth-bhs) thermal resistance of the interface layer (thin film) placed between metal core printed circuit board (MCPCB) board and Al substrates} was nearly equal to Ag paste boundary condition and showed low values for ZnO film prepared at 30 min process time measured at 700 mA. The TJ value of LED mounted on ZnO thin film (prepared at 30 min.) coated Al substrates was measured to be 74.8°C. High value in junction temperature difference (ΔTJ) of about 4.7°C was noticed with 30 min processed ZnO thin film when compared with Al boundary condition. Low correlated colour temperature and high luminous flux values of tested LED were also observed with ZnO thin film boundary condition (processed at 30 min) compared with both Al substrate and Ag paste boundary condition.

Originality/value

Overall, 30 min CVD processed ZnO thin film would be an alternative for commercial TIM to achieve efficient thermal management. This will increase the life span of the LED as the proposed material decreases the TJ values.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 March 2024

Malav R. Sanghvi, Karan W. Chugh and S.T. Mhaske

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the…

Abstract

Purpose

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the ferrocyanide used on resulting pigment properties is studied.

Design/methodology/approach

Prussian blue is commonly synthesized by direct or indirect methods, through iron salt and ferrocyanide/ferricyanide reactions. In this study, the direct, single-step process was pursued by dropwise addition of the ferrocyanide into ferric chloride (both as aqueous solutions). Two batches – (K-PB) and (Na-PB) – were prepared by using potassium ferrocyanide and sodium ferrocyanide, respectively. The development of pigment was confirmed by an identification test and characterized by spectroscopic techniques. Pigment properties were determined, and light fastness was observed for acrylic emulsion films incorporating dispersed pigment.

Findings

The two pigments differed mainly in elemental detection owing to the dissimilar ferrocyanide being used; IR spectroscopy where only (Na-PB) showed peaks indicating water molecules; and bleeding tendency where (K-PB) was water soluble whereas (Na-PB) was not. The pigment exhibited remarkable blue colour and good bleeding resistance in several solvents and showed no fading in 24 h of light exposure though oil absorption values were high.

Originality/value

This article is a comparative study of Prussian blue pigment properties obtained using different ferrocyanides. The dissimilarity in the extent of water solubility will influence potential applications as a colourant in paints and inks. K-PB would be advantageous in aqueous formulations to confer a blue colour without any dispersing aid but unfavourable in systems where other coats are water-based due to their bleeding tendency.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 February 2023

Shanmugan Subramani and Mutharasu Devarajan

Light emitting diode (LED) has been the best resource for commercial and industrial lighting applications. However, thermal management in high power LEDs is a major challenge in…

Abstract

Purpose

Light emitting diode (LED) has been the best resource for commercial and industrial lighting applications. However, thermal management in high power LEDs is a major challenge in which the thermal resistance (Rth) and rise in junction temperature (TJ) are critical parameters. The purpose of this work is to evaluate the Rth and Tj of the LED attached with the modified heat transfer area of the heatsink to improve thermal management.

Design/methodology/approach

This paper deals with the design of metal substrate for heatsink applications where the surface area of the heatsink is modified. Numerical simulation on heat distribution proved the influence of the design aspects and surface area of heatsink.

Findings

TJ was low for outward step design when compared to flat heatsink design (ΔT ∼ 38°C) because of increase in surface area from 1,550 mm2 (flat) to 3,076 mm2 (outward step). On comparison with inward step geometry, the TJ value was low for outward step configuration (ΔTJ ∼ 6.6°C), which is because of efficient heat transfer mechanism with outward step design. The observed results showed that outward step design performs well for LED testing by reducing both Rth and TJ for different driving currents.

Originality/value

This work is authors’ own design and also has the originality for the targeted application. To the best of the authors’ knowledge, the proposed design has not been tried before in the electronic or LED applications.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 October 2023

Arash Arianpoor, Elham Yazdanmehr and Majid Elahi Shirvan

To measure the dynamic features of compassion as an emotional and behavioral construct, the present research used a univariate latent growth modeling (LGM) approach within the…

Abstract

Purpose

To measure the dynamic features of compassion as an emotional and behavioral construct, the present research used a univariate latent growth modeling (LGM) approach within the structural equation modeling (SEM) framework. The aim was to trace the dynamic development of compassion longitudinally in accounting and business students during a three-credit English course at university.

Design/methodology/approach

The suggested method ensures the measurement invariance over time, deals with the first order latent variable, traces its growth and takes into account the measurement errors. This longitudinal analytical method was used to explore the initial state and the growth of compassion in four points of time during a language course. The data were collected from 60 adult accounting and business students in four time phases using Sprecher and Fehr's Compassionate Love Scale and were analyzed in Mplus 8.4 with univariate LGM.

Findings

The model fit was accepted and the invariance of the latent factor was confirmed over time. The negative covariance between intercept and slope (second-order latent variables) suggested that lower initial scores in L2 learners' compassion show a faster increase in compassion over time as the mean of slope is larger than that of the intercept. L2 learners who started off at a higher level of compassion showed a slower change in compassion over time. This can be at least partly explained by the teacher's motivating role or learners' compassion but needs to be further explored in complementary qualitative phases for deeper insights.

Originality/value

In the present research, awareness was raised of the developmental nature of compassion as an emotional and behavioral construct essential to the accounting and business profession. The great strength of this research lies in the dynamic approach to the compassion construct and the LGM used to capture the temporal growth of compassion and how it evolved through the L2 course.

Details

Asian Review of Accounting, vol. 32 no. 2
Type: Research Article
ISSN: 1321-7348

Keywords

Article
Publication date: 11 October 2023

Radha Subramanyam, Y. Adline Jancy and P. Nagabushanam

Cross-layer approach in media access control (MAC) layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data…

Abstract

Purpose

Cross-layer approach in media access control (MAC) layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data transmissions in wireless sensor network (WSN) and Internet of Things (IoT) applications. Choosing the correct objective function in Nash equilibrium for game theory will address fairness index and resource allocation to the nodes. Game theory optimization for distributed may increase the network performance. The purpose of this study is to survey the various operations that can be carried out using distributive and adaptive MAC protocol. Hill climbing distributed MAC does not need a central coordination system and location-based transmission with neighbor awareness reduces transmission power.

Design/methodology/approach

Distributed MAC in wireless networks is used to address the challenges like network lifetime, reduced energy consumption and for improving delay performance. In this paper, a survey is made on various cooperative communications in MAC protocols, optimization techniques used to improve MAC performance in various applications and mathematical approaches involved in game theory optimization for MAC protocol.

Findings

Spatial reuse of channel improved by 3%–29%, and multichannel improves throughput by 8% using distributed MAC protocol. Nash equilibrium is found to perform well, which focuses on energy utility in the network by individual players. Fuzzy logic improves channel selection by 17% and secondary users’ involvement by 8%. Cross-layer approach in MAC layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data transmissions in WSN and IoT applications. Cross-layer and cooperative communication give energy savings of 27% and reduces hop distance by 4.7%. Choosing the correct objective function in Nash equilibrium for game theory will address fairness index and resource allocation to the nodes.

Research limitations/implications

Other optimization techniques can be applied for WSN to analyze the performance.

Practical implications

Game theory optimization for distributed may increase the network performance. Optimal cuckoo search improves throughput by 90% and reduces delay by 91%. Stochastic approaches detect 80% attacks even in 90% malicious nodes.

Social implications

Channel allocations in centralized or static manner must be based on traffic demands whether dynamic traffic or fluctuated traffic. Usage of multimedia devices also increased which in turn increased the demand for high throughput. Cochannel interference keep on changing or mitigations occur which can be handled by proper resource allocations. Network survival is by efficient usage of valid patis in the network by avoiding transmission failures and time slots’ effective usage.

Originality/value

Literature survey is carried out to find the methods which give better performance.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 29 March 2024

Rıza Atav and Özge Çolakoğlu

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate…

Abstract

Purpose

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate colors directly over the photos of fabric samples instead of color measuring with spectrophotometer which is thought to be useful in terms of online digital color assessment.

Design/methodology/approach

In this study, 100% polyester (150 denier) single jersey knitted fabrics (weight: 145 g/m2, course density: 15 loops/cm, wale density: 24 loops/cm) were used in the trials. The effect of laser treatments before and after dyeing on color was investigated. Laser treatments were applied to fabrics at different resolutions (20, 25 and 30 dpi) and pixel times (60, 80 and 100 µs) before dyeing. The power of the laser beam was 210 W and the wavelength was 10.6 µm. In order to determine the effect of laser treatment on polyester; FTIR analysis, SEM-EDX analysis and bursting strength tests were applied to untreated and treated fabric samples.

Findings

It was found that treatments with laser have a significant effect on disperse dye-uptake of polyester fibers, and for this reason laser-treated fabrics were dyed in darker shade. Furthermore, it was determined that the samples treated at 30 dpi started to melt and the fabric was damaged considerably, but the fabrics treated at 20 and 25 dpi were not affected at all. Another result obtained regarding the use of laser technology in polyester fabrics is that if some areas of fabrics are not treated with laser and some other areas are treated with laser at 20 dpi 60 µs and 25 dpi 60 µs, it will be possible to obtain patterns containing three different shades of the same color on the fabric.

Originality/value

When the literature is examined, it is seen that there are various studies on the dyeability and patterning of polyester fabrics with disperse dyes by laser technology. As it is known, today color measurement is done digitally using a spectrophotometer. However, when we look at a photograph on computer screens, the colors we see are defined by RGB (red-green-blue) values, while in the spectrophotometer they are defined by L*a*b* (L*: lightness-darkness, a*: redness-greenness, b*: yellowness-blueness) values. Especially when it is desired to produce various design products by creating patterns with laser technology, it would be more useful to show the color directly to the customer on the computer screen and to be able to speak over the same values on the color. For this reason, in this study, the color measurement of the fabric samples was not made with a spectrophotometer, instead, the RGB values obtained from the photographs of the samples were converted into L*a*b* values with MATLAB and interpreted, that is, a digital color evaluation was made on the photographs. Therefore, it is believed that this study will contribute to the literature.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 February 2024

Yaxi Liu, Chunxiu Qin, Yulong Wang and XuBu Ma

Exploratory search activities are ubiquitous in various information systems. Much potentially useful or even serendipitous information is discovered during the exploratory search…

Abstract

Purpose

Exploratory search activities are ubiquitous in various information systems. Much potentially useful or even serendipitous information is discovered during the exploratory search process. Given its irreplaceable role in information systems, exploratory search has attracted growing attention from the information system community. Since few studies have methodically reviewed current publications, researchers and practitioners are unable to take full advantage of existing achievements, which, in turn, limits their progress in this field. Through a literature review, this study aims to recapitulate important research topics of exploratory search in information systems, providing a research landscape of exploratory search.

Design/methodology/approach

Automatic and manual searches were performed on seven reputable databases to collect relevant literature published between January 2005 and July 2023. The literature pool contains 146 primary studies on exploratory search in information system research.

Findings

This study recapitulated five important topics of exploratory search, namely, conceptual frameworks, theoretical frameworks, influencing factors, design features and evaluation metrics. Moreover, this review revealed research gaps in current studies and proposed a knowledge framework and a research agenda for future studies.

Originality/value

This study has important implications for beginners to quickly get a snapshot of exploratory search studies, for researchers to re-align current research or discover new interesting issues, and for practitioners to design information systems that support exploratory search.

Details

The Electronic Library , vol. 42 no. 2
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 22 March 2024

Mohammad Dehghan Afifi, Bahram Jalili, Amirmohammad Mirzaei, Payam Jalili and Davood Ganji

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds…

Abstract

Purpose

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds and Prandtl numbers, radiation parameter, velocity slip parameter, energy dissipation parameter and viscosity parameter on the velocity and temperature profile are displayed numerically and graphically.

Design/methodology/approach

By using simplification, nonlinear differential equations are converted into ordinary nonlinear equations. Modeling is done in the Cartesian coordinate system. The finite element method (FEM) and the Akbari-Ganji method (AGM) are used to solve the present problem. The finite element model determines each parameter’s effect on the fluid’s velocity and temperature.

Findings

The results show that if the viscosity parameter increases, the temperature of the fluid increases, but the velocity of the fluid decreases. As can be seen in the figures, by increasing the permeability parameter, a reduction in velocity and an enhancement in fluid temperature are observed. When the Reynolds number increases, an increase in fluid velocity and temperature is observed. If the speed slip parameter increases, the speed decreases, and as the energy dissipation parameter increases, the temperature also increases.

Originality/value

When considering factors like thermal conductivity and variable viscosity in this context, they can significantly impact velocity slippage conditions. The primary objective of the present study is to assess the influence of thermal conductivity parameters and variable viscosity within a porous medium on ferrofluid behavior. This particular flow configuration is chosen due to the essential role of ferrofluids and their extensive use in engineering, industry and medicine.

1 – 10 of 35