Search results

1 – 2 of 2
Article
Publication date: 20 December 2023

Indira Damarla, Venmathi M., Krishnakumar V. and Anbarasan P.

In this paper, a new front end converter (FEC) topology has been proposed for the switched reluctance (SR) motor drive. This study aims to present the performance analysis of…

Abstract

Purpose

In this paper, a new front end converter (FEC) topology has been proposed for the switched reluctance (SR) motor drive. This study aims to present the performance analysis of FEC-based SR motor drive using various types of control schemes like conventional proportional integral (PI) controller, fuzzy logic controller (FLC) and fuzzy-tuned proportional integral controller (Fuzzy-PI).

Design/methodology/approach

The proposed FEC-based SR motor drive with various control strategies is derived for the torque ripple minimization and speed control.

Findings

The steady state and the dynamic response of the FEC-based SR motor drive are analyzed using three different controllers under change in speed and loading conditions. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller.

Originality/value

The hardware prototype has been implemented for the FEC-based SR motor drive by using the Xilinx SPARTAN 6 FPGA processor. The experimental verification has been conducted and the results have been measured under steady state and dynamic conditions.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 15 September 2023

Prabhakaran Koothu Kesavan, Umashankar Subramaniam and Dhafer Jaber Almakhles

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet…

Abstract

Purpose

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet synchronous motor (PMSM) to improve the transient response of the system.

Design/methodology/approach

Proportional integral (PI) plus PI controller and the proposed PDF plus PDFF controller are designed, stability analysis is performed using the extended root locus method, and the effect of the damping coefficient is also extensively studied to validate the robustness of the proposed controller.

Findings

When compared to a cascaded PI plus PI controller, the proposed control approach has a much shorter settling time for the entire system and a 50% reduction in overshoot in stator current under extensive variations in speed with load disturbance.

Originality/value

The proposed controller is programmed into an FPGA Altera Cyclone II and applied to a 1.5 kW laboratory prototype PMSM drive. The effectiveness of the proposed methods has been demonstrated experimentally throughout a wide variable speed range, from 0 to 157 rad/s at different load conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2