Search results

1 – 10 of 65
Open Access
Article
Publication date: 7 March 2023

Solomon O. Obadimu and Kyriakos I. Kourousis

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the…

1127

Abstract

Purpose

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the honeycomb structure. However, research on in-plane compressive performance of both classical and new types of honeycombs fabricated via AM is still ongoing. Several important findings have emerged over the past years, with significance for the AM community and a review is considered necessary and timely. This paper aims to review the in-plane compressive performance of AM honeycomb structures.

Design/methodology/approach

This paper provides a state-of-the-art review focussing on the in-plane compressive performance of AM honeycomb structures, covering both polymers and metals. Recently published studies, over the past six years, have been reviewed under the specific theme of in-plane compression properties.

Findings

The key factors influencing the AM honeycombs' in-plane compressive performance are identified, namely the geometrical features, such as topology shape, cell wall thickness, cell size and manufacturing parameters. Moreover, the techniques and configurations commonly used for geometry optimisation toward improving mechanical performance are discussed in detail. Current AM limitations applicable to AM honeycomb structures are identified and potential future directions are also discussed in this paper.

Originality/value

This work evaluates critically the primary results and findings from the published research literature associated with the in-plane compressive mechanical performance of AM honeycombs.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 29 July 2022

Serena Graziosi, Federico Maria Ballo, Flavia Libonati and Sofia Senna

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors…

1456

Abstract

Purpose

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors focused on two cell topologies, the body-centred cubic (BCC) and the Kelvin, characterized by a bending-dominated behaviour relevant to the design of energy-absorbing applications.

Design/methodology/approach

The authors analysed the experimental and numerical behaviour of multiple BCC and Kelvin structures. The authors designed homogenous and graded arrays of different dimensions. The authors compared their technical feasibility with two three-dimensional-printed technologies, such as the fused filament fabrication and the selective laser sintering, choosing thermoplastic polyurethane as the base material.

Findings

The results demonstrate that multiple design aspects determine how the printing process influences the behaviour of soft lattices. Besides, a graded distribution of the material could contribute to fine-tuning this behaviour and mitigating the influence of the printing process.

Practical implications

Despite being less explored than their rigid counterpart, soft lattices are now becoming of great interest, especially when lightweight, wearable and customizable solutions are needed. This study contributes to filling this gap.

Originality/value

Only a few studies analyse design and printing issues of soft lattices due to the intrinsic complexity of printing flexible materials.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 21 December 2023

Rafael Pereira Ferreira, Louriel Oliveira Vilarinho and Americo Scotti

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards…

Abstract

Purpose

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.

Design/methodology/approach

For the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).

Findings

The results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.

Originality/value

This paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 16 October 2018

Maximilian Schniedenharn, Frederik Wiedemann and Johannes Henrich Schleifenbaum

The purpose of this paper is to introduce an approach in measuring the shielding gas flow within laser powder bed fusion (L-PBF) machines under near-process conditions (regarding…

2769

Abstract

Purpose

The purpose of this paper is to introduce an approach in measuring the shielding gas flow within laser powder bed fusion (L-PBF) machines under near-process conditions (regarding oxygen content and shielding gas flow).

Design/methodology/approach

The measurements are made sequentially using a hot-wire anemometer. After a short introduction into the measurement technique, the system which places the measurement probe within the machine is described. Finally, the measured shielding gas flow of a commercial L-PBF machine is presented.

Findings

An approach to measure the shielding gas flow within SLM machines has been developed and successfully tested. The use of a thermal anemometer along with an automated probe-placement system enables the space-resolved measurement of the flow speed and its turbulence.

Research limitations/implications

The used single-normal (SN) hot-wire anemometer does not provide the flow vectors’ orientation. Using a probe with two or three hot-films and an improved placement system will provide more information about the flow and less disturbance to it.

Originality/value

A measurement system which allows the measurement of the shielding gas flow within commercial L-PBF machines is presented. This enables the correlation of the shielding gas flow with the resulting parts’ quality.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 May 2002

1310

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 11 no. 2
Type: Research Article
ISSN: 0965-3562

Content available
111

Abstract

Details

New Library World, vol. 106 no. 1/2
Type: Research Article
ISSN: 0307-4803

Content available
Book part
Publication date: 3 November 2017

Graham Taylor

Abstract

Details

Understanding Brexit
Type: Book
ISBN: 978-1-78714-679-2

Content available
Article
Publication date: 1 October 2001

Linda Ashcroft

85

Abstract

Details

Library Hi Tech News, vol. 18 no. 10
Type: Research Article
ISSN: 0741-9058

Content available
Article
Publication date: 16 January 2007

Linda Ashcroft

327

Abstract

Details

New Library World, vol. 108 no. 1/2
Type: Research Article
ISSN: 0307-4803

Content available
Article
Publication date: 3 April 2007

Linda Ashcroft

412

Abstract

Details

New Library World, vol. 108 no. 3/4
Type: Research Article
ISSN: 0307-4803

1 – 10 of 65