Search results

1 – 10 of 755
Article
Publication date: 1 June 2000

I.A. Ashcroft, D.J. Hughes and S.J. Shaw

Fibre reinforced polymer composites (FRPs) are finding increasing usage in many industrial sectors. Adhesive bonding is often the most attractive joining technique for these…

3183

Abstract

Fibre reinforced polymer composites (FRPs) are finding increasing usage in many industrial sectors. Adhesive bonding is often the most attractive joining technique for these materials in terms of structural efficiency and cost of manufacture. However, concerns regarding the lack of reliable design methods, the long term ageing behaviour and the difficulties in non‐destructive evaluation and repair of bonded joints has led to a reluctance to use adhesives in primary structures. DERA has been involved in the assessment of adhesive bonding for joining FRPs for many years. This paper focuses on investigations at DERA into the effects that environment and fatigue loading have on the performance of bonded composite joints, and briefly reviews current approaches to strength and lifetime prediction. It is seen that adhesively bonded composite joints can be significantly affected by the service environment, however, this is highly dependent on the joint type and materials involved.

Details

Assembly Automation, vol. 20 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 7 March 2023

Solomon O. Obadimu and Kyriakos I. Kourousis

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the…

1172

Abstract

Purpose

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the honeycomb structure. However, research on in-plane compressive performance of both classical and new types of honeycombs fabricated via AM is still ongoing. Several important findings have emerged over the past years, with significance for the AM community and a review is considered necessary and timely. This paper aims to review the in-plane compressive performance of AM honeycomb structures.

Design/methodology/approach

This paper provides a state-of-the-art review focussing on the in-plane compressive performance of AM honeycomb structures, covering both polymers and metals. Recently published studies, over the past six years, have been reviewed under the specific theme of in-plane compression properties.

Findings

The key factors influencing the AM honeycombs' in-plane compressive performance are identified, namely the geometrical features, such as topology shape, cell wall thickness, cell size and manufacturing parameters. Moreover, the techniques and configurations commonly used for geometry optimisation toward improving mechanical performance are discussed in detail. Current AM limitations applicable to AM honeycomb structures are identified and potential future directions are also discussed in this paper.

Originality/value

This work evaluates critically the primary results and findings from the published research literature associated with the in-plane compressive mechanical performance of AM honeycombs.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 July 2012

Mariana D. Banea, Lucas F.M. da Silva and Raul D.S.G. Campilho

The purpose of this paper is to provide an insight into the techniques which are used and developed for adhesive bulk and joint specimens manufacturing.

Abstract

Purpose

The purpose of this paper is to provide an insight into the techniques which are used and developed for adhesive bulk and joint specimens manufacturing.

Design/methodology/approach

After a short introduction, the paper discusses various techniques for adhesive bulk and joint specimens manufacturing and highlights their advantages and limitations. A number of examples in the form of different bulk and joint specimens of different types of adhesives are used to show the methods for determining the adhesive's mechanical properties needed for design in adhesive technology. In order to predict the adhesive joint strength, the stress distribution and a suitable failure criterion are essential. If a continuum mechanics approach is used, the availability of the stress‐strain curve of the adhesive is sufficient (the bulk tensile test or the TAST test is used). For fracture mechanics‐based design, mode I and mode II toughness is needed (DCB and ENF tests are used). Finally, single lap joints (SLJs) are used to assess the adhesive's performance in a joint.

Findings

Before an adhesive can be specified for an application, screening tests should be conducted in order to compare and evaluate the various adhesion parameters. Properties of adhesives can vary greatly and an appropriate selection is essential for a proper joint design. Thus, to determine the stresses and strains in adhesive joints in a variety of configurations, it is necessary to characterize the adhesive behaviour in order to know its mechanical properties. A great variety of test geometries and specimens are used to obtain adhesive properties. However, for manufacturing of adhesive bulk specimens and joints necessary for use in these tests, properly, moulds should be designed.

Originality/value

The paper summarises the main methods of preparing adhesive bulk and joint specimens and the test methods for determining the mechanical properties needed for design in adhesive technology. Emphasis is given to the preparation of specimens of suitable quality for mechanical property determination and the moulds designed for this purpose.

Details

Assembly Automation, vol. 32 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 January 2009

M. Grujicic, G. Arakere, V. Sellappan, J.C. Ziegert and D. Schmueser

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low‐density structurally‐efficient materials, the application of…

Abstract

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low‐density structurally‐efficient materials, the application of advanced manufacturing and joining technologies and the design of highly‐integrated, multi‐functional components/sub‐assemblies) plays a prominent role. In the present work, a multi‐disciplinary design optimization methodology has been presented and subsequently applied to the development of a light composite vehicle door (more specifically, to an inner door panel). The door design has been optimized with respect to its weight while meeting the requirements /constraints pertaining to the structural and NVH performances, crashworthiness, durability and manufacturability. In the optimization procedure, the number and orientation of the composite plies, the local laminate thickness and the shape of different door panel segments (each characterized by a given composite‐lay‐up architecture and uniform ply thicknesses) are used as design variables. The methodology developed in the present work is subsequently used to carry out weight optimization of the front door on Ford Taurus, model year 2001. The emphasis in the present work is placed on highlighting the scientific and engineering issues accompanying multidisciplinary design optimization and less on the outcome of the optimization analysis and the computational resources/architecture needed to support such activity.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 May 2023

Taha Sheikh and Kamran Behdinan

This paper aims to present a geometrical void model in conjunction with a multiscale method to evaluate the effect of interraster distance, bead (raster) width and layer height…

Abstract

Purpose

This paper aims to present a geometrical void model in conjunction with a multiscale method to evaluate the effect of interraster distance, bead (raster) width and layer height, on the voids concentration (volume) and subsequently calculate the final mechanical properties of the fused deposition modeling parts at constant infill.

Design/methodology/approach

A geometric model of the voids inside the representative volume element (RVE) is combined with a two-scale asymptotic homogenization method. The RVEs are subjected to periodic boundary conditions solved by finite element (FE) to calculate the effective mechanical properties of the corresponding RVEs. The results are validated with literature and experiments.

Findings

Bead width from 0.2 to 0.3 mm, reported a decrease of 25% and 24% void volume for a constant layer height (0.1 and 0.2 mm – 75% infill). It is reported that the void’s volume increased up to 14%, 32% and 36% for 75%, 50% and 25% infill by varying layer height (0.1–0.2  and 0.3 mm), respectively. For elastic modulus, 14%, 9% and 10% increase is reported when the void’s volume is decreased from 0.3 to 0.1 mm at a constant 75% infill density. The bead width and layer height have an inverse effect on voids volume.

Originality/value

This work brings values: a multiscale-geometric model capable of predicting the voids controllability by varying interraster distance, layer height and bead width. The idealized RVE generation slicer software and Solidworks save time and cost (<10 min, $0). The proposed model can effectively compute the mechanical properties together with the voids analysis.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 October 2020

Mingkang Zhang, Yongqiang Yang, Wentao Qin, Shibiao Wu, Jie Chen and Changhui Song

This study aims to focus on the optimized design and mechanical properties of gradient triply periodic minimal surface cellular structures manufactured by selective laser melting.

Abstract

Purpose

This study aims to focus on the optimized design and mechanical properties of gradient triply periodic minimal surface cellular structures manufactured by selective laser melting.

Design/methodology/approach

Uniform and gradient IWP and primitive cellular structures have been designed by the optimized function in MATLAB, and selective laser melting technology was applied to manufacture these cellular structures. Finite element analysis was applied to optimize the pinch-off problem, and compressive tests were carried out for the evaluation of mechanical properties of gradient cellular structures.

Findings

Finite element analysis shows that the elastic modulus of IWP increased as design parameter b increased, and then decreased when parameter b is higher than 5.5. The highest elastic modulus of primitive increased by 89.2% when parameter b is 6. The compressive behavior of gradient IWP and primitive shows a layer-by-layer way, and elastic modulus and first maximum compressive strength of gradient primitive are higher than that of gradient IWP. The effective energy absorption of gradient cellular structures increased as the average porosity decreased, and the effective energy absorption of gradient primitive is about twice than that of gradient IWP.

Originality/value

This paper presents an optimized design method for the pinch-off problem of gradient triply periodic minimal surface cellular structures.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2014

A. Pirondi, G. Giuliese and F. Moroni

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the…

Abstract

Purpose

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the propagation of defects in 3D. The paper aims to discuss this issue.

Design/methodology/approach

The procedure has been implemented in the finite element (FE) solver (Abaqus) by programming the appropriate software-embedded subroutines. Part of the procedure is devoted to the calculation of the rate of energy release per unit, G, necessary to know the growth of the defect.

Findings

The model was tested on different joint geometries, with different load conditions (pure mode I, mode II pure, mixed mode I/II) and the results of the analysis were compared with analytical solutions or virtual crack closure technique (VCCT).

Originality/value

The possibility to simulate the growth of a crack without any re-meshing requirements and the relatively easy possibility to manipulate the constitutive law of the cohesive elements makes the CZM attractive also for the fatigue crack growth simulation. However, differently from VCCT, three-dimensional fatigue de-bonding/delamination with CZM is not yet state-of-art in FE softwares.

Details

International Journal of Structural Integrity, vol. 5 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 March 2017

Recep M. Gorguluarslan, Umesh N. Gandhi, Yuyang Song and Seung-Kyum Choi

Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like…

1662

Abstract

Purpose

Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like cellular structures. Unfortunately, designs suggested by lattice structure optimization methods are often infeasible because the obtained cross-sectional parameter values cannot be fabricated by additive manufacturing (AM) processes, and it is often very difficult to transform a design proposal into one that can be additively designed. This paper aims to propose an improved, two-phase lattice structure optimization framework that considers manufacturing constraints for the AM process.

Design/methodology/approach

The proposed framework uses a conventional ground structure optimization method in the first phase. In the second phase, the results from the ground structure optimization are modified according to the pre-determined manufacturing constraints using a second optimization procedure. To decrease the computational cost of the optimization process, an efficient gradient-based optimization algorithm, namely, the method of feasible directions (MFDs), is integrated into this framework. The developed framework is applied to three different design examples. The efficacy of the framework is compared to that of existing lattice structure optimization methods.

Findings

The proposed optimization framework provided designs more efficiently and with better performance than the existing optimization methods.

Practical implications

The proposed framework can be used effectively for optimizing complex lattice-based structures.

Originality/value

An improved optimization framework that efficiently considers the AM constraints was reported for the design of lattice-based structures.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 February 2022

Janos Plocher, Jean-Baptiste Wioland and Ajit Singh Panesar

Fibre-reinforced additive manufacturing (FRAM) with short and continuous fibres yields light and stiff parts and thus increasing industry acceptance. High material anisotropy and…

480

Abstract

Purpose

Fibre-reinforced additive manufacturing (FRAM) with short and continuous fibres yields light and stiff parts and thus increasing industry acceptance. High material anisotropy and specific manufacturing constraints shift the focus towards design for AM (DfAM), particularly on toolpath strategies. Assessing the design-property-processing relations of infill patterns is fundamental to establishing design guidelines for FRAM.

Design/methodology/approach

Subject to the DfAM factors performance, economy and manufacturability, the efficacy of two conventional infill patterns (grid and concentric) was compared with two custom strategies derived from the medial axis transformation (MAT) and guided by the principal stresses (MPS). The recorded stiffness and strength, the required CPU and print time, and the degree of path undulation and effective fibre utilisation (minimum printable fibre length) associated with each pattern, served as assessment indices for different case studies. Moreover, the influence of material anisotropy was examined, and a stiffness-alignment index was introduced to predict a pattern’s performance.

Findings

The highest stiffnesses and strengths were recorded for the MPS infill, emphasising the need for tailoring print paths rather than using fixed patterns. In contrast to the grid infill, the concentric infill offered short print times and reasonable utilisation of continuous fibres. The MAT-based infill yielded an excellent compromise between the three DfAM factors and experimentally resulted in the best performance.

Originality/value

This constitutes the first comprehensive investigation into infill patterns under DfAM consideration for FRAM, facilitating design and processing choices.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 January 2024

Silvia Badini, Serena Graziosi, Michele Carboni, Stefano Regondi and Raffaele Pugliese

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical…

Abstract

Purpose

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical behaviour and morphological characterisation of a thermoplastic polyurethane-waste tire rubber composite filament (TPU-WTR), this study aims to establish a framework for end-of-life tire (ELT) recycling using the MEX technology.

Design/methodology/approach

The research assesses the impact of various process parameters on the mechanical properties of the TPU-WTR filament. Hysteresis analysis and Poisson’s ratio estimation are conducted to investigate the material’s behaviour. In addition, the compressive performance of diverse TPU-WTR triply periodic minimal surface lattices is explored to test the filament suitability for printing intricate structures.

Findings

Results demonstrate the potential of the TPU-WTR filament in developing sustainable structures. The MEX process can, therefore, contribute to the recycling of WTR. Mechanical testing has provided insights into the influence of process parameters on the material behaviour, while investigating various lattice structures has challenged the material’s capabilities in printing complex topologies.

Social implications

This research holds significant social implications addressing the growing environmental sustainability and waste management concerns. Developing 3D-printed sustainable structures using recycled materials reduces resource consumption and promotes responsible production practices for a more environmentally conscious society.

Originality/value

This study contributes to the field by showcasing the use of MEX technology for ELT recycling, particularly focusing on the TPU-WTR filament, presenting a novel approach to sustainable consumption and production aligned with the United Nations Sustainable Development Goal 12.

1 – 10 of 755