Search results

1 – 10 of 348
Article
Publication date: 21 February 2024

Seo-Hyeon Oh and Keun Park

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally…

Abstract

Purpose

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally burdensome, especially for intricate microcellular architectures. This study aims to propose a direct slicing method tailored for digital light processing-type AM processes for the efficient generation of slicing data for microcellular structures.

Design/methodology/approach

The authors proposed a direct slicing method designed for microcellular structures, encompassing micro-lattice and triply periodic minimal surface (TPMS) structures. The sliced data of these structures were represented mathematically and then convert into 2D monochromatic images, bypassing the time-consuming slicing procedures required by 3D STL data. The efficiency of the proposed method was validated through data preparations for lattice-based nasopharyngeal swabs and TPMS-based ellipsoid components. Furthermore, its adaptability was highlighted by incorporating 2D images of additional features, eliminating the requirement for complex 3D Boolean operations.

Findings

The direct slicing method offered significant benefits upon implementation for microcellular structures. For lattice-based nasopharyngeal swabs, it reduced data size by a factor of 1/300 and data preparation time by a factor of 1/8. Similarly, for TPMS-based ellipsoid components, it reduced data size by a factor of 1/60 and preparation time by a factor of 1/16.

Originality/value

The direct slicing method allows for bypasses the computational burdens associated with traditional indirect slicing from 3D STL data, by directly translating complex cellular structures into 2D sliced images. This method not only reduces data volume and processing time significantly but also demonstrates the versatility of sliced data preparation by integrating supplementary features using 2D operations.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 3 July 2023

Shubhi Gupta, Govind Swaroop Pathak and Baidyanath Biswas

This paper aims to determine the impact of perceived virtuality on team dynamics and outcomes by adopting the Input-Mediators-Outcome (IMO) framework. Further, it also…

Abstract

Purpose

This paper aims to determine the impact of perceived virtuality on team dynamics and outcomes by adopting the Input-Mediators-Outcome (IMO) framework. Further, it also investigates the mediating role of team processes and emergent states.

Design/methodology/approach

The authors collected survey data from 315 individuals working in virtual teams (VTs) in the information technology sector in India using both offline and online questionnaires. They performed the analysis using Partial Least Squares Structural Equation Modelling (PLS-SEM).

Findings

The authors investigated two sets of hypotheses – both direct and indirect (or mediation interactions). Results show that psychological empowerment and conflict management are significant in managing VTs. Also, perceived virtuality impacts team outcomes, i.e. perceived team performance, team satisfaction and subjective well-being.

Research limitations/implications

The interplay between the behavioural team process (conflict management) and the emergent state (psychological empowerment) was examined. The study also helps broaden our understanding of the various psychological variables associated with teamwork in the context of VTs.

Practical implications

Findings from this study will aid in assessing the consequences of virtual teamwork at both individual and organisational levels, such as guiding the design and sustainability of VT arrangements, achieving higher productivity in VTs, and designing effective and interactive solutions in the virtual space.

Social implications

The study examined the interplay between behavioural team processes (such as conflict management) and emergent states (such as psychological empowerment). The study also theorises and empirically tests the relationships between perceived virtuality and team outcomes (i.e. both affective and effectiveness). It may serve as a guide to understanding team dynamics in VTs better.

Originality/value

This exploratory study attempts to enhance the current understanding of the research and practice of VTs within a developing economy.

Book part
Publication date: 1 February 2024

Özge Çaylak Dönmez and Burhan Sevim

Three-dimensional (3D) printing has great potential in the food industry. While 3D printing technology offers customised food products to consumers, it also allows producers to…

Abstract

Three-dimensional (3D) printing has great potential in the food industry. While 3D printing technology offers customised food products to consumers, it also allows producers to develop new products using a wide variety of alternative food ingredients, modernise the production process and carry out environmentally friendly production. This research aims to determine the attitudes of students towards 3D foods who are studying in the Department of Gastronomy and Culinary Arts, as they are both consumers and examine different food processing systems and use them in the field of application. As a result of the study, it was identified that the participants believed that 3D printing is a great modern technology that allows the development of new foods, that it will bring benefit to us in the future, reduce the cost of food and food waste, increase the sustainability of food and that they see it as environmentally friendly. In addition, it was determined that the participants did not think that 3D-printed foods were disgusting; they found these foods reliable, could try them in the future and were excited to experience them.

Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 November 2023

Annada Prasad Moharana, Ratnesh Raj and Amit Rai Dixit

The industrial application of continuous glass fabric-reinforced polymer composites (GFRPCs) is growing; however, the manufacturing boundedness of complex structures and the high…

Abstract

Purpose

The industrial application of continuous glass fabric-reinforced polymer composites (GFRPCs) is growing; however, the manufacturing boundedness of complex structures and the high cost of molds restrict their use. This research proposes a three-dimensional (3 D) printing process for GFRPCs that allows low-cost and rapid fabrication of complex composite parts.

Design/methodology/approach

The composite is manufactured using a digital light processing (DLP) based Vat-photopolymerization (VPP) process. For the composites, suitable resin material and glass fabrics are chosen based on their strength, stiffness, and printability. Jacob's working curve characterizes the curing parameters for adequate adhesion between the matrix and fabrics. The tensile and flexural properties were examined using UTM. The fabric distribution and compactness of the cured resin were analyzed in scanning electron microscopy.

Findings

The result showed that the object could print at a glass fabric content of 40 volume%. In DLP-based VPP printing technology, the adequate exposure time was found to be 30 seconds for making a GFRPC. The tensile strength and Young's modulus values were increased by 5.54 and 8.81 times, respectively than non-reinforced cured specimens. The flexural strength and modulus were also effectively increased to 2.8 and 3 times more than the neat specimens. In addition, the process is found to help fabricate the functional component.

Originality/value

The experimental procedure to fabricate GFRPC specimens through DLP-based AM is a spectacular experimental approach.

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

477

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 21 December 2023

Mehran Ghasempour-Mouziraji, Daniel Afonso, Saman Hosseinzadeh, Constantinos Goulas, Mojtaba Najafizadeh, Morteza Hosseinzadeh, D.D. Ganji and Ricardo Alves de Sousa

The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, Akbari–Ganji method and Gaussian method, in conjunction…

Abstract

Purpose

The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, Akbari–Ganji method and Gaussian method, in conjunction with the finite element method. The aim is to examine the impact of processing parameters on temperature history.

Design/methodology/approach

Through analytical investigation and finite element simulation, this research examines the influence of processing parameters on temperature history. Simufact software with a thermomechanical approach was used for finite element simulation, while radial basis function, Akbari–Ganji and Gaussian methods were used for analytical modeling to solve the heat transfer differential equation.

Findings

The accuracy of both finite element and analytical methods was validated with about 90%. The findings revealed direct relationships between thermal conductivity (from 100 to 200), laser power (from 400 to 800 W), heat source depth (from 0.35 to 0.75) and power absorption coefficient (from 0.4 to 0.8). Increasing the values of these parameters led to higher temperature history. On the other hand, density (from 7,600 to 8,200), emission coefficient (from 0.5 to 0.7) and convective heat transfer (from 35 to 90) exhibited an inverse relationship with temperature history.

Originality/value

The application of analytical modeling, particularly the utilization of the Akbari–Ganji, radial basis functions and Gaussian methods, showcases an innovative approach to studying directed energy deposition. This analytical investigation offers an alternative to relying solely on experimental procedures, potentially saving time and resources in the optimization of DED processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 December 2023

Mohamed Ahmed Omrane, Raphaël Côté and Vincent Demers

The purpose of this study is to determine the material extrusion (MEX) printability envelope of a new kind of low-viscosity powder-binder feedstocks using rheological properties.

Abstract

Purpose

The purpose of this study is to determine the material extrusion (MEX) printability envelope of a new kind of low-viscosity powder-binder feedstocks using rheological properties.

Design/methodology/approach

Formulation of 13 feedstocks (variation of solid loading 60–67 Vol.% and thickening agent proportion 3–15 Vol.%) that were characterized and printed at different temperatures.

Findings

Three rheological models were successfully used to define the viscosity envelope, producing stable and defect-free printing. At a shear deformation rate experienced by the feedstock in the nozzle ranging from 100 to 300 s–1, it was confirmed that metal injection molding (MIM) feedstocks exhibiting a low viscosity between 100 and 150 Pa s could be printed using an extrusion temperature as low as 85 °C.

Practical implications

MEX can be used in synergy with MIM to accelerate mold development for a new injected part or simply as a replacement for MIM when the cost of the mold becomes too high for very small production volumes.

Originality/value

Correlation between the rheological properties of this new generation of low-viscosity feedstocks and MEX printability has been demonstrated for the first time.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2024

Fernando Peña, José Carlos Rico, Pablo Zapico, Gonzalo Valiño and Sabino Mateos

The purpose of this paper is to provide a new procedure for in-plane compensation of geometric errors that often appear in the layers deposited by an additive manufacturing (AM…

80

Abstract

Purpose

The purpose of this paper is to provide a new procedure for in-plane compensation of geometric errors that often appear in the layers deposited by an additive manufacturing (AM) process when building a part, regardless of the complexity of the layer geometry.

Design/methodology/approach

The procedure is based on comparing the real layer contours to the nominal ones extracted from the STL model of the part. Considering alignment and form deviations, the compensation algorithm generates new compensated contours that match the nominal ones as closely as possible. To assess the compensation effectiveness, two case studies were analysed. In the first case, the parts were not manufactured, but the distortions were simulated using a predictive model. In the second example, the test part was actually manufactured, and the distortions were measured on a coordinate measuring machine.

Findings

The geometric deviations detected in both case studies, as evaluated by various quality indicators, reduced significantly after applying the compensation procedure, meaning that the compensated and nominal contours were better matched both in shape and size.

Research limitations/implications

Although large contours showed deviations close to zero, dimensional overcompensation was observed when applied to small contours. The compensation procedure could be enhanced if the applied compensation factor took into account the contour size of the analysed layer and other geometric parameters that could have an influence.

Originality/value

The presented method of compensation is applicable to layers of any shape obtained in any AM process.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 348