Search results

1 – 10 of over 200000
Article
Publication date: 4 May 2021

Sandang Guo, Yaqian Jing and Bingjun Li

The purpose of this paper is to make multivariable gray model to be available for the application on interval gray number sequences directly, the matrix form of interval…

Abstract

Purpose

The purpose of this paper is to make multivariable gray model to be available for the application on interval gray number sequences directly, the matrix form of interval multivariable gray model (IMGM(1,m,k) model) is constructed to simulate and forecast original interval gray number sequences in this paper.

Design/methodology/approach

Firstly, the interval gray number is regarded as a three-dimensional column vector, and the parameters of multivariable gray model are expressed in matrix form. Based on the dynamic gray action and optimized background value, the interval multivariable gray model is constructed. Finally, two examples and comparisons are carried out to verify the effectiveness of IMGM(1,m,k) model.

Findings

The model is applied to simulate and predict expert value, foreign direct investment, automobile sales and steel output, respectively. The results show that the proposed model has better simulation and prediction performance than another two models.

Practical implications

Due to the uncertainty information and continuous changing of reality, the interval gray numbers are used to characterize full information of original data. And the IMGM(1,m,k) model not only considers the characteristics of parameters changing with time but also takes into account information on lower, middle and upper bounds of interval gray numbers simultaneously to make better suitable for practical application.

Originality/value

The main contribution of this paper is to propose a new interval multivariable gray model, which considers the interaction between the lower, middle and upper bounds of interval numbers and need not to transform interval gray number sequences into real sequences. According to combining different characteristics of each bound of interval gray numbers, the matrix form of interval multivariable gray model is established to simulate and forecast interval gray numbers. In addition, the model introduces dynamic gray action to reflect the changes of parameters over time. Instead of white equation of classic MGM(1,m), the difference equation is directly used to solve the simulated and predicted values.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 September 2019

Zoubida Chorfi, Abdelaziz Berrado and Loubna Benabbou

Evaluating the performance of supply chains is a convoluted task because of the complexity that is inextricably linked to the structure of the aforesaid chains. Therefore, the…

Abstract

Purpose

Evaluating the performance of supply chains is a convoluted task because of the complexity that is inextricably linked to the structure of the aforesaid chains. Therefore, the purpose of this paper is to present an integrated approach for evaluating and sizing real-life health-care supply chains in the presence of interval data.

Design/methodology/approach

To achieve the objective, this paper illustrates an approach called Latin hypercube sampling by replacement (LHSR) to identify a set of precise data from the interval data; then the standard data envelopment analysis (DEA) models can be used to assess the relative efficiencies of the supply chains under evaluation. A certain level of data aggregation is suggested to improve the discriminatory power of the DEA models and an experimental design is conducted to size the supply chains under assessment.

Findings

The newly developed integrated methodology assists the decision-makers (DMs) in comparing their real-life supply chains against peers and sizing their resources to achieve a certain level of production.

Practical implications

The proposed integrated DEA-based approach has been successfully implemented to suggest an appropriate structure to the actual public pharmaceutical supply chain in Morocco.

Originality/value

The originality of the proposed approach comes from the development of an integrated methodology to evaluate and size real-life health-care supply chains while taking into account interval data. This developed integrated technique certainly adds value to the health-care DMs for modelling their supply chains in today's world.

Details

Journal of Modelling in Management, vol. 15 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Content available
Book part
Publication date: 6 November 2023

Abstract

Details

Higher Education in Emergencies: International Case Studies
Type: Book
ISBN: 978-1-83797-345-3

Book part
Publication date: 23 June 2016

Alexander Chudik, Kamiar Mohaddes, M. Hashem Pesaran and Mehdi Raissi

This paper develops a cross-sectionally augmented distributed lag (CS-DL) approach to the estimation of long-run effects in large dynamic heterogeneous panel data models with…

Abstract

This paper develops a cross-sectionally augmented distributed lag (CS-DL) approach to the estimation of long-run effects in large dynamic heterogeneous panel data models with cross-sectionally dependent errors. The asymptotic distribution of the CS-DL estimator is derived under coefficient heterogeneity in the case where the time dimension (T ) and the cross-section dimension (N ) are both large. The CS-DL approach is compared with more standard panel data estimators that are based on autoregressive distributed lag (ARDL) specifications. It is shown that unlike the ARDL-type estimator, the CS-DL estimator is robust to misspecification of dynamics and error serial correlation. The theoretical results are illustrated with small sample evidence obtained by means of Monte Carlo simulations, which suggest that the performance of the CS-DL approach is often superior to the alternative panel ARDL estimates, particularly when T is not too large and lies in the range of 30–50.

Book part
Publication date: 12 April 2007

Abstract

Details

Threats from Car Traffic to the Quality of Urban Life
Type: Book
ISBN: 978-0-08-048144-9

Article
Publication date: 12 September 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Pierluigi Siano and Jorge Pomares

Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are…

Abstract

Purpose

Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. Unlike conventional synchronous motors, permanent magnet synchronous spherical motors consist of a fixed inner shell, which is the stator, and a rotating outer shell, which is the rotor. Their dynamic model is multivariable and strongly nonlinear. The treatment of the associated control problem is important.

Design/methodology/approach

In this paper, the multivariable dynamic model of permanent magnet synchronous spherical motors is analysed, and a nonlinear optimal (H-infinity) control method is developed for it. Differential flatness properties are proven for the spherical motors’ state-space model. Next, the motors’ state-space description undergoes approximate linearization with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. The linearization process takes place at each sampling instance around a time-varying operating point, which is defined by the present value of the motors’ state vector and by the last sampled value of the control input vector. For the approximately linearized model of the permanent magnet synchronous spherical motors, a stabilizing H-infinity feedback controller is designed. To compute the controller’s gains, an algebraic Riccati equation has to be repetitively solved at each time-step of the control algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis. Finally, the performance of the nonlinear optimal control method is compared against a flatness-based control approach implemented in successive loops.

Findings

Due to the nonlinear and multivariable structure of the state-space model of spherical motors, the solution of the associated nonlinear control problem is a nontrivial task. In this paper, a novel nonlinear optimal (H-infinity) control approach is proposed for the dynamic model of permanent magnet synchronous spherical motors. The method is based on approximate linearization of the motor’s state-space model with the use of first-order Taylor series expansion and the computation of the associated Jacobian matrices. Furthermore, the paper has introduced a different solution to the nonlinear control problem of the permanent magnet synchronous spherical motor, which is based on flatness-based control implemented in successive loops.

Research limitations/implications

The presented control approaches do not exhibit any limitations, but on the contrary, they have specific advantages. In comparison to global linearization-based control schemes (such as Lie-algebra-based control), they do not make use of complicated changes of state variables (diffeomorphisms) and transformations of the system's state-space description. The computed control inputs are applied directly to the initial nonlinear state-space model of the permanent magnet spherical motor without the intervention of inverse transformations and thus without coming against the risk of singularities.

Practical implications

The motion control problem of spherical motors is nontrivial because of the complicated nonlinear and multivariable dynamics of these electric machines. So far, there have been several attempts to apply nonlinear feedback control to permanent magnet-synchronous spherical motors. However, due to the model’s complexity, few results exist about the associated nonlinear optimal control problem. The proposed nonlinear control methods for permanent magnet synchronous spherical motors make more efficient, precise and reliable the use of such motors in robotics, electric traction and several automation systems.

Social implications

The treated research topic is central for robotic and industrial automation. Permanent magnet synchronous spherical motors are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. The solution of the control problem for the nonlinear dynamic model of permanent magnet synchronous spherical motors has many industrial applications and therefore contributes to economic growth and development.

Originality/value

The proposed nonlinear optimal control method is novel compared to past attempts to solve the optimal control problem for nonlinear dynamical systems. Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation which is used for computing the feedback gains of the controller is new, and so is the global stability proof for this control method. Compared to nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed into the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes, which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. Furthermore, the second control method proposed in this paper, which is flatness-based control in successive loops, is also novel and demonstrates substantial contribution to nonlinear control for robotics and industrial automation.

Article
Publication date: 2 November 2022

Shishir Gupta, Rachaita Dutta and Soumik Das

This paper aims to study photothermal excitation process in an initially stressed semi-infinite double porous thermoelastic semiconductor with voids subjected to Eringen’s…

Abstract

Purpose

This paper aims to study photothermal excitation process in an initially stressed semi-infinite double porous thermoelastic semiconductor with voids subjected to Eringen’s nonlocal elasticity theory under the fractional order triple-phase-lag thermoelasticity theory. The considered substrate is governed by the mechanical and thermal loads at the free surface.

Design/methodology/approach

The normal mode technique is used to carry out the investigation of photothermal transportation. By virtue of the MATHEMATICA software, each distribution is exhibited graphically.

Findings

The expressions of the displacements, temperature, volume fractions of both kinds of voids, carrier density and stresses are determined analytically. With the help of the numerical data for silicon (Si) material, graphical implementations are presented on the basis of initial stress, fractional order, nonlocality and thermoelectric coupling parameters.

Originality/value

The present study fabricates the association of Eringen’s nonlocal theory and the stress analysis in a semiconducting double porous thermoelastic material with voids, which significantly implies the originality of the conducted work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

Nissim Ben David and Aviad Tur-Sinai

The purpose of this paper is to extract the optimal time allocation of weekly hours among work, sleep, sports, and internet use for 16 different demographic groups.

Abstract

Purpose

The purpose of this paper is to extract the optimal time allocation of weekly hours among work, sleep, sports, and internet use for 16 different demographic groups.

Design/methodology/approach

The agent wishes to minimize the gap between his or her actual and optimal allocation for each activity. His or her actual allocation of time for each activity is affected by his or her allocations for other activities and by exogenous variables. A system of simultaneous equations is constructed, with the four levels of time allocation as the endogenous variables. Using a cross-section database of 928 Israel residents, the authors estimate the system and predict the actual allocation of time. Inserting the forecast equations into the agents’ target function and differentiating by each actual time allocation, the authors extract the optimal time allocation for 16 different demographic groups.

Findings

The results make it clear that the optimal desired level of sleep hours is highest among married Jews and non-Jews of both genders, whereas the desired level of work hours is highest among female non-Jews whose children have a computer and among married males, Jewish and non-Jewish alike. Female Jews and non-Jews wish to allocate the most hours to internet use, while married males of both nationalities wish to allocate the fewest. The desired level of sports hours is highest among married and non-married Jews. Examining the effect of age on time allocation, the main findings show a very significant cutback in allocation of hours for sleep among agents at age 20.8 and an increase of about 2.5 hours of sleep among agents aged 60.8, both relative to those aged 40.8.

Originality/value

The original model presented here brings a non-traditional approach to the analysis of time allocation. The authors believe that each agent wishes that he or she could allocate his or her time for personal benefit on the basis of a theoretical apportionment determined on the basis of experience and tendencies. Even though an agent’s actual time allocation may be affected by many factors, he or she still has a sense of disutility when the actual allocation deviates from selected optimum.

Details

International Journal of Social Economics, vol. 44 no. 12
Type: Research Article
ISSN: 0306-8293

Keywords

Article
Publication date: 17 July 2023

Anand Kumar Yadav, M.S. Barak and Vipin Gupta

This paper aims to study the impact of pyro-electricity, moisture and temperature diffusivity on the energy distribution of plane waves at the free surface of an orthotropic…

Abstract

Purpose

This paper aims to study the impact of pyro-electricity, moisture and temperature diffusivity on the energy distribution of plane waves at the free surface of an orthotropic piezo-hygro-thermo-elastic medium.

Design/methodology/approach

This study presents the novel creation of governing equations for an anisotropic piezothermoelastic medium with moisture impact, which is a significant contribution of this paper.

Findings

In addition to providing numerical data for the amplitude ratios and energy ratios of reflected waves, this study identifies five different kinds of coupled reflected plane waves, namely, quasi-longitudinal P wave, quasi-thermal wave, quasi-transverse wave, quasi-moisture wave and electric potential wave.

Research limitations/implications

The graphical analysis examines the impact of various factors, such as the angle of incidence, moisture and temperature diffusivity, pyro-electricity and frequency, on energy distribution.

Practical implications

This paper's results significantly impact the development of more efficient piezoelectric materials and their applications in geophysics.

Originality/value

The authors of the submitted document initiated and produced it collectively, with equal contributions from all members.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 200000