Search results

1 – 1 of 1
Article
Publication date: 3 July 2023

Mariusz Korkosz, Stanisław Noga and Tomasz Rogalski

The study aims to show the influence of selected mechanical parameters of the rotor on the maximum speed and parameters of the electric motor.

Abstract

Purpose

The study aims to show the influence of selected mechanical parameters of the rotor on the maximum speed and parameters of the electric motor.

Design/methodology/approach

A simplified mechanical analysis of the rotor of the electric motor was conducted, determining the safety factor of the motor. An analysis of the impact of key rotor parameters (significant from the mechanical strength perspective) on the electromagnetic parameters and the safety factor of the selected high-speed electric motor was carried out. The influence of changes in the rotor’s geometrical dimensions (centrifugal force) on the electromagnetic parameters of the electric motor was shown.

Findings

The study shows the impact of changes in selected rotor parameters on electromagnetic parameters and the safety factor of a high-speed electric motor (at its required operating point of 45,000 rpm). The dependence of the safety factor as a function of the maximum motor speed was determined for the proposed rotor modifications.

Practical implications

The proposed modifications can be used in larger drive systems. They have practically no impact on increasing the value of the motor’s moment of inertia (they do not degrade the dynamics of the motor’s operation).

Originality/value

It was proposed to use a new design coefficient which is in relation to the motor’s safety coefficient. It has been shown that a minimal modification of the motor rotor allows to increase its maximum speed by several dozen per cent (while maintaining the safety factor). It has also been shown that when operating at maximum speed within the safe range, the change in the geometrical dimensions of the rotor hardly influences the change in the value of the centrifugal force.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Last 12 months (1)

Content type

1 – 1 of 1