Search results

1 – 10 of 76
Article
Publication date: 6 July 2012

Arkadiusz Miaskowski, Bartosz Sawicki and Andrzej Krawczyk

The purpose of this paper is to present the basic ideas of magnetic nanoparticles' usage in the breast cancer treatment, which is called magnetic fluid hyperthermia. The proposed…

Abstract

Purpose

The purpose of this paper is to present the basic ideas of magnetic nanoparticles' usage in the breast cancer treatment, which is called magnetic fluid hyperthermia. The proposed approach offers a relatively simple methodology of energy deposition, allowing an adequate temperature control at the target tissue, in this case a cancerous one. By means of a numerical method the authors aim to investigate two heating effects caused by varying magnetic fields, i.e. to compare the power density heating effects of eddy currents and magnetic nanoparticles.

Design/methodology/approach

In order to numerically investigate the combination of the overheating effect of magnetic nanoparticles and eddy currents, the Finite Element Method solver based on FEniCS project has been prepared. To include the magnetic fluid in the model it has been assumed that power losses in the magnetic nanoparticles are completely converted into heat, according to experimentally developed formula. That formula can be interpreted as the hysteresis losses with regard to the volume of magnetic fluid. Finally, the total power density has been calculated as the product of the sum of power density from eddy currents and hysteresis losses. That methodology has been applied to calculate the effectiveness of magnetic fluid hyperthermia with regard to the female breast phantom.

Findings

The paper presents the methodology which can be used in magnetic fluid hyperthermia therapy planning and Computer Aid Diagnosis (CAD). Furthermore, it is shown how to overcome one of the most serious engineering challenges connected with hyperthermia, i.e. achieving adequate temperature in deep tumors without overheating the body surface.

Practical implications

The obtained results connected with the assessment of eddy currents effect suggest that during hyperthermia treatment the configuration which consists of an exciting coil and human body, plays a curial role. Moreover, the authors believe that these results will help to predict the skin surface overheating that accompanies deep heating. The presented methodology can be used by engineers in the development of Computer Aid Diagnosis systems.

Originality/value

In a given patient's situation a number of choices must be made to determine the parameters of the hyperthermia treatment. These include the need of multiple‐point temperature measurements for accurate and thorough monitoring. Treatment planning will require accurate characterization of the applicator deposition pattern and the tissue parameters, as well as the numerical techniques to predict the resultant heating pattern. The presented paper shows how to overcome these problems from the numerical point of view at least.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2006

Murat Tunç, Ünal Çamdali, Cem Parmaksizoğlu and Sermet Çikrikçi

Cancer is the foremost disease that causes death. The objective of hyperthermia in cancer therapy is to raise the temperature of cancerous tissue above a therapeutic value while…

2824

Abstract

Purpose

Cancer is the foremost disease that causes death. The objective of hyperthermia in cancer therapy is to raise the temperature of cancerous tissue above a therapeutic value while maintaining the surrounding normal tissue at sublethal temperature values in cases where surgical intervention is dangerous or impossible. The malignant tissue is heated up to 42°C in the treatment. In this method, the unaffected tissues are aimed to have minimum damage, while the affected ones are destroyed. Therefore, it is very important for the optimization of the method to know the temperature profiles in both tissues. Accurately estimating the tissue temperatures has been a very important issue for tumor hyperthermia treatment planning. This paper, proposes to theoretically predict the temperature response of the biological tissues subject to external EM heating by using the space‐dependent blood perfusion term in Pennes bio‐heat equation.

Design/methodology/approach

The bio‐heat transfer equation is parabolic partial differential equation. Grid points including independent variables are initially formed in solution of partial differential equation by finite element method. In this study, one dimensional bio‐heat transfer equation is solved by flex‐PDE finite element method.

Findings

In this study, the bio‐heat transfer equation is solved for variable blood perfusion values and the temperature field resulting after a hyperthermia treatment is obtained. Homogeneous, non‐homogeneous tissue and constant, variable blood perfusion rates are considered in this study to display the temperature fields in the biological material exposed to externally induced electromagnetic irradiation.

Originality/value

Temperature‐dependent tissue thermophysical properties have been used and the Pennes equation is solved by FEM analysis. Variable blood perfusion and heat generation values have been used in calculations for healthy tissue and tissue with tumor.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 July 2023

Sara I. Abdelsalam, A. Magesh, P. Tamizharasi and A.Z. Zaher

The purpose of this paper is to investigate the behavior of a non-Newtonian nanofluid caused by peristaltic waves along an asymmetric channel. Additionally considered is the…

Abstract

Purpose

The purpose of this paper is to investigate the behavior of a non-Newtonian nanofluid caused by peristaltic waves along an asymmetric channel. Additionally considered is the production of thermal radiation and activation energy.

Design/methodology/approach

The equations of momentum, mass and temperature of Sutterby nanofluids are obtained for long wavelength. By taking into account the velocity, temperature and concentration, the formulation is further finished.

Findings

Analyses of the physical variables influencing flow features are represented graphically. The present investigation shows that an enhancement in the temperature ratio parameter results in an increase in both the temperature and concentration. The investigation also shows that the dimensionless reaction rate significantly raises the kinetic energy of the reactant, which permits more particle collisions and as a result, raises the temperature field.

Originality/value

Due to their importance in the treatment of cancer, activation energy and thermal radiation as a route of heat transfer are crucial and exciting phenomena for researchers. So, the cancer cells are killed, and tumors are reduced in size with heat and making hyperthermia therapy a cutting-edge cancer treatment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 September 2011

V. Nemkov, R. Ruffini, R. Goldstein, J. Jackowski, T.L. DeWeese and R. Ivkov

The purpose of this paper is to continue studies previously reported with the primary focus of optimizing an inductor design. The potential benefits of hyperthermia for cancer…

Abstract

Purpose

The purpose of this paper is to continue studies previously reported with the primary focus of optimizing an inductor design. The potential benefits of hyperthermia for cancer therapy, particularly metastatic cancers of the prostate, may be realized by the use of targeted magnetic nanoparticles that are heated by alternating magnetic fields (AMFs).

Design/methodology/approach

To further explore the potential of this technology, a high‐throughput cell culture treatment system is needed. The AMF requirements for this research present challenges to the design and manufacture of an induction system because a high flux density field at high frequency must be created in a relatively large volume. Additional challenges are presented by the requirement that the inductor must maintain an operating temperature between 35 and 39°C with continuous duty operation for 1 h or longer. Results of simulation and design of two devices for culture samples and for in vitro tests of multiple samples in uniform field are described.

Findings

The inductor design chosen provides a uniform distribution of relatively high magnetic field strength while providing an optimal reduction in the voltage and power requirement. Through development of design and selection of magnetic concentrator, the exposure of the cell cultures to the heat generated by the inductor is minimized.

Originality/value

This method of generating uniform high AC magnetic fields in a large volume is beneficial for the study of hyperthermia in cells for a high throughput, necessary for cancer treatment research.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 November 2000

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end…

1347

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end of the paper contains 748 references to papers, conference proceedings and theses/dissertations dealing with the finite element analyses and simulations in biomedicine that were published between 1985 and 1999.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 March 2017

Bernard Lamien, Leonardo A.B. Varon, Helcio R.B. Orlande and Guillermo E. Elicabe

The purpose of this paper is to focus on applications related to the hyperthermia treatment of cancer, with heating imposed either by a laser in the near-infrared range or by…

Abstract

Purpose

The purpose of this paper is to focus on applications related to the hyperthermia treatment of cancer, with heating imposed either by a laser in the near-infrared range or by radiofrequency waves. The particle filter algorithms are compared in terms of computational time and solution accuracy.

Design/methodology/approach

The authors extend the analyses performed in their previous works to compare three different algorithms of the particle filter, as applied to the hyperthermia treatment of cancer. The particle filters examined here are the sampling importance resampling (SIR) algorithm, the auxiliary sampling importance resampling (ASIR) algorithm and Liu & West’s algorithm.

Findings

Liu & West’s algorithm resulted in the largest computational times. On the other hand, this filter was shown to be capable of dealing with very large uncertainties. In fact, besides the uncertainties in the model parameters, Gaussian noises, similar to those used for the SIR and ASIR filters, were added to the evolution models for the application of Liu & West’s filter. For the three filters, the estimated temperatures were in excellent agreement with the exact ones.

Practical implications

This work may help medical doctors in the future to prescribe treatment protocols and also opens the possibility of devising control strategies for the hyperthermia treatment of cancer.

Originality/value

The natural solution to couple the uncertain results from numerical simulations with the measurements that contain uncertainties, aiming at the better prediction of the temperature field of the tissues inside the body, is to formulate the problem in terms of state estimation, as performed in this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2009

Paul W. Partridge and Luiz C. Wrobel

The purpose of this paper is to present an inverse analysis procedure based on a coupled numerical formulation through which the coefficients describing non‐linear thermal…

Abstract

Purpose

The purpose of this paper is to present an inverse analysis procedure based on a coupled numerical formulation through which the coefficients describing non‐linear thermal properties of blood perfusion may be identified.

Design/methodology/approach

The coupled numerical technique involves a combination of the dual reciprocity boundary element method (DRBEM) and a genetic algorithm (GA) for the solution of the Pennes bioheat equation. Both linear and quadratic temperature‐dependent variations are considered for the blood perfusion.

Findings

The proposed DRBEM formulation requires no internal discretisation and, in this case, no internal nodes either, apart from those defining the interface tissue/tumour. It is seen that the skin temperature variation changes as the blood perfusion increases, and in certain cases flat or nearly flat curves are produced. The proposed algorithm has difficulty to identify the perfusion parameters in these cases, although a more advanced genetic algorithm may provide improved results.

Practical implications

The coupled technique allows accurate inverse solutions of the Pennes bioheat equation for quantitative diagnostics on the physiological conditions of biological bodies and for optimisation of hyperthermia for cancer therapy.

Originality/value

The proposed technique can be used to guide hyperthermia cancer treatment, which normally involves heating tissue to 42‐43°C. When heated up to this range of temperatures, the blood flow in normal tissues, e.g. skin and muscle, increases significantly, while blood flow in the tumour zone decreases. Therefore, the consideration of temperature‐dependent blood perfusion in this case is not only essential for the correct modelling of the problem, but also should provide larger skin temperature variations, making the identification problem easier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 August 2021

Magdy A. Ezzat and Roland W. Lewis

The system of equations for fractional thermo-viscoelasticity is used to investigate two-dimensional bioheat transfer and heat-induced mechanical response in human skin tissue…

Abstract

Purpose

The system of equations for fractional thermo-viscoelasticity is used to investigate two-dimensional bioheat transfer and heat-induced mechanical response in human skin tissue with rheological properties.

Design/methodology/approach

Laplace and Fourier’s transformations are used. The resulting formulation is applied to human skin tissue subjected to regional hyperthermia therapy for cancer treatment. The inversion process for Fourier and Laplace transforms is carried out using a numerical method based on Fourier series expansions.

Findings

Comparisons are made with the results anticipated through the coupled and generalized theories. The influences of volume materials properties and fractional order parameters for all the regarded fields are examined. The results indicate that volume relaxation parameters, as well as fractional order parameters, play a major role in all considered distributions.

Originality/value

Bio-thermo-mechanics includes bioheat transfer, biomechanics, burn injury and physiology. In clinical applications, knowledge of bio-thermo-mechanics in living tissues is very important. One can infer from the numerical results that, with a finite distance, the thermo-mechanical waves spread to skin tissue, removing the unrealistic predictions of the Pennes’ model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2012

Carlos L. Antunes, Tony Richard O. Almeida and Nélia Raposeiro

Cholangiocarcinoma is an adenocarcinoma of the bile ducts which drain bile from the liver into the small intestine. Unfortunately, most patients are diagnosed at an advanced stage…

Abstract

Purpose

Cholangiocarcinoma is an adenocarcinoma of the bile ducts which drain bile from the liver into the small intestine. Unfortunately, most patients are diagnosed at an advanced stage of the disease with almost no chances for surgery, the only potentially curative treatment. As nitinol stents can be used to reduce stricture problems of the bile duct, these can be also considered as potential electrodes for hyperthermia treatments. Previous works show that, in fact, these metallic stents might be used as part of a feasible solution for delivering radiofrequency (RF) energy into a tumor located in a hollow organ to destroy the tumor tissue. However, the tissue lesion induced is not completely uniform due to convective heat transfer associated to the blood flow in the nearby vessels. The purpose of this paper is to study the use of saline solution for modifying the electrical conductivity of the tissue in order to obtain a more uniform lesion.

Design/methodology/approach

A numerical analysis using finite element method on a simplified model of the porta hepatis is performed. The tumor tissue is divided in three sections and simulations were performed considering a higher electrical conductivity in the middle section of the tumor, imitating the presence of a saline solution in this part of the tissue.

Findings

Results show that it is possible to obtain a more regular volume, by the way the tumor tissue is preferentially heated, although there are still some risks on exceeding the dimension of the bile duct.

Originality/value

This study presents the numerical analysis of a saline‐enhanced RF tissue thermoablation of a cholangiocarcinoma considering a stent‐based electrode. Results point to the possibility of obtaining a more regular volume of damaged tissue in order to heat and preferentially destroy the tumor tissue.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 76