Search results

1 – 10 of 317
Article
Publication date: 11 February 2021

Krithiga R. and Ilavarasan E.

The purpose of this paper is to enhance the performance of spammer identification problem in online social networks. Hyperparameter tuning has been performed by researchers in the…

Abstract

Purpose

The purpose of this paper is to enhance the performance of spammer identification problem in online social networks. Hyperparameter tuning has been performed by researchers in the past to enhance the performance of classifiers. The AdaBoost algorithm belongs to a class of ensemble classifiers and is widely applied in binary classification problems. A single algorithm may not yield accurate results. However, an ensemble of classifiers built from multiple models has been successfully applied to solve many classification tasks. The search space to find an optimal set of parametric values is vast and so enumerating all possible combinations is not feasible. Hence, a hybrid modified whale optimization algorithm for spam profile detection (MWOA-SPD) model is proposed to find optimal values for these parameters.

Design/methodology/approach

In this work, the hyperparameters of AdaBoost are fine-tuned to find its application to identify spammers in social networks. AdaBoost algorithm linearly combines several weak classifiers to produce a stronger one. The proposed MWOA-SPD model hybridizes the whale optimization algorithm and salp swarm algorithm.

Findings

The technique is applied to a manually constructed Twitter data set. It is compared with the existing optimization and hyperparameter tuning methods. The results indicate that the proposed method outperforms the existing techniques in terms of accuracy and computational efficiency.

Originality/value

The proposed method reduces the server load by excluding complex features retaining only the lightweight features. It aids in identifying the spammers at an earlier stage thereby offering users a propitious environment.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 7 August 2017

Eun-Suk Yang, Jong Dae Kim, Chan-Young Park, Hye-Jeong Song and Yu-Seop Kim

In this paper, the problem of a nonlinear model – specifically the hidden unit conditional random fields (HUCRFs) model, which has binary stochastic hidden units between the data…

Abstract

Purpose

In this paper, the problem of a nonlinear model – specifically the hidden unit conditional random fields (HUCRFs) model, which has binary stochastic hidden units between the data and the labels – exhibiting unstable performance depending on the hyperparameter under consideration.

Design/methodology/approach

There are three main optimization search methods for hyperparameter tuning: manual search, grid search and random search. This study shows that HUCRFs’ unstable performance depends on the hyperparameter values used and its performance is based on tuning that draws on grid and random searches. All experiments conducted used the n-gram features – specifically, unigram, bigram, and trigram.

Findings

Naturally, selecting a list of hyperparameter values based on a researchers’ experience to find a set in which the best performance is exhibited is better than finding it from a probability distribution. Realistically, however, it is impossible to calculate using the parameters in all combinations. The present research indicates that the random search method has a better performance compared with the grid search method while requiring shorter computation time and a reduced cost.

Originality/value

In this paper, the issues affecting the performance of HUCRF, a nonlinear model with performance that varies depending on the hyperparameters, but performs better than CRF, has been examined.

Details

Engineering Computations, vol. 34 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 May 2020

Murat Özemre and Ozgur Kabadurmus

The purpose of this paper is to present a novel framework for strategic decision making using Big Data Analytics (BDA) methodology.

2546

Abstract

Purpose

The purpose of this paper is to present a novel framework for strategic decision making using Big Data Analytics (BDA) methodology.

Design/methodology/approach

In this study, two different machine learning algorithms, Random Forest (RF) and Artificial Neural Networks (ANN) are employed to forecast export volumes using an extensive amount of open trade data. The forecasted values are included in the Boston Consulting Group (BCG) Matrix to conduct strategic market analysis.

Findings

The proposed methodology is validated using a hypothetical case study of a Chinese company exporting refrigerators and freezers. The results show that the proposed methodology makes accurate trade forecasts and helps to conduct strategic market analysis effectively. Also, the RF performs better than the ANN in terms of forecast accuracy.

Research limitations/implications

This study presents only one case study to test the proposed methodology. In future studies, the validity of the proposed method can be further generalized in different product groups and countries.

Practical implications

In today’s highly competitive business environment, an effective strategic market analysis requires importers or exporters to make better predictions and strategic decisions. Using the proposed BDA based methodology, companies can effectively identify new business opportunities and adjust their strategic decisions accordingly.

Originality/value

This is the first study to present a holistic methodology for strategic market analysis using BDA. The proposed methodology accurately forecasts international trade volumes and facilitates the strategic decision-making process by providing future insights into global markets.

Details

Journal of Enterprise Information Management, vol. 33 no. 6
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 2 February 2022

Wenzhong Gao, Xingzong Huang, Mengya Lin, Jing Jia and Zhen Tian

The purpose of this paper is to target on designing a short-term load prediction framework that can accurately predict the cooling load of office buildings.

Abstract

Purpose

The purpose of this paper is to target on designing a short-term load prediction framework that can accurately predict the cooling load of office buildings.

Design/methodology/approach

A feature selection scheme and stacking ensemble model to fulfill cooling load prediction task was proposed. Firstly, the abnormal data were identified by the data density estimation algorithm. Secondly, the crucial input features were clarified from three aspects (i.e. historical load information, time information and meteorological information). Thirdly, the stacking ensemble model combined long short-term memory network and light gradient boosting machine was utilized to predict the cooling load. Finally, the proposed framework performances by predicting cooling load of office buildings were verified with indicators.

Findings

The identified input features can improve the prediction performance. The prediction accuracy of the proposed model is preferable to the existing ones. The stacking ensemble model is robust to weather forecasting errors.

Originality/value

The stacking ensemble model was used to fulfill cooling load prediction task which can overcome the shortcomings of deep learning models. The input features of the model, which are less focused on in most studies, are taken as an important step in this paper.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 February 2024

Chong Wu, Xiaofang Chen and Yongjie Jiang

While the Chinese securities market is booming, the phenomenon of listed companies falling into financial distress is also emerging, which affects the operation and development of…

Abstract

Purpose

While the Chinese securities market is booming, the phenomenon of listed companies falling into financial distress is also emerging, which affects the operation and development of enterprises and also jeopardizes the interests of investors. Therefore, it is important to understand how to accurately and reasonably predict the financial distress of enterprises.

Design/methodology/approach

In the present study, ensemble feature selection (EFS) and improved stacking were used for financial distress prediction (FDP). Mutual information, analysis of variance (ANOVA), random forest (RF), genetic algorithms, and recursive feature elimination (RFE) were chosen for EFS to select features. Since there may be missing information when feeding the results of the base learner directly into the meta-learner, the features with high importance were fed into the meta-learner together. A screening layer was added to select the meta-learner with better performance. Finally, Optima hyperparameters were used for parameter tuning by the learners.

Findings

An empirical study was conducted with a sample of A-share listed companies in China. The F1-score of the model constructed using the features screened by EFS reached 84.55%, representing an improvement of 4.37% compared to the original features. To verify the effectiveness of improved stacking, benchmark model comparison experiments were conducted. Compared to the original stacking model, the accuracy of the improved stacking model was improved by 0.44%, and the F1-score was improved by 0.51%. In addition, the improved stacking model had the highest area under the curve (AUC) value (0.905) among all the compared models.

Originality/value

Compared to previous models, the proposed FDP model has better performance, thus bridging the research gap of feature selection. The present study provides new ideas for stacking improvement research and a reference for subsequent research in this field.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 February 2021

Zulkifli Halim, Shuhaida Mohamed Shuhidan and Zuraidah Mohd Sanusi

In the previous study of financial distress prediction, deep learning techniques performed better than traditional techniques over time-series data. This study investigates the…

Abstract

Purpose

In the previous study of financial distress prediction, deep learning techniques performed better than traditional techniques over time-series data. This study investigates the performance of deep learning models: recurrent neural network, long short-term memory and gated recurrent unit for the financial distress prediction among the Malaysian public listed corporation over the time-series data. This study also compares the performance of logistic regression, support vector machine, neural network, decision tree and the deep learning models on single-year data.

Design/methodology/approach

The data used are the financial data of public listed companies that been classified as PN17 status (distress) and non-PN17 (not distress) in Malaysia. This study was conducted using machine learning library of Python programming language.

Findings

The findings indicate that all deep learning models used for this study achieved 90% accuracy and above with long short-term memory (LSTM) and gated recurrent unit (GRU) getting 93% accuracy. In addition, deep learning models consistently have good performance compared to the other models over single-year data. The results show LSTM and GRU getting 90% and recurrent neural network (RNN) 88% accuracy. The results also show that LSTM and GRU get better precision and recall compared to RNN. The findings of this study show that the deep learning approach will lead to better performance in financial distress prediction studies. To be added, time-series data should be highlighted in any financial distress prediction studies since it has a big impact on credit risk assessment.

Research limitations/implications

The first limitation of this study is the hyperparameter tuning only applied for deep learning models. Secondly, the time-series data are only used for deep learning models since the other models optimally fit on single-year data.

Practical implications

This study proposes recommendations that deep learning is a new approach that will lead to better performance in financial distress prediction studies. Besides that, time-series data should be highlighted in any financial distress prediction studies since the data have a big impact on the assessment of credit risk.

Originality/value

To the best of authors' knowledge, this article is the first study that uses the gated recurrent unit in financial distress prediction studies based on time-series data for Malaysian public listed companies. The findings of this study can help financial institutions/investors to find a better and accurate approach for credit risk assessment.

Details

Business Process Management Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 30 October 2023

Qiangqiang Zhai, Zhao Liu, Zhouzhou Song and Ping Zhu

Kriging surrogate model has demonstrated a powerful ability to be applied to a variety of engineering challenges by emulating time-consuming simulations. However, when it comes to…

Abstract

Purpose

Kriging surrogate model has demonstrated a powerful ability to be applied to a variety of engineering challenges by emulating time-consuming simulations. However, when it comes to problems with high-dimensional input variables, it may be difficult to obtain a model with high accuracy and efficiency due to the curse of dimensionality. To meet this challenge, an improved high-dimensional Kriging modeling method based on maximal information coefficient (MIC) is developed in this work.

Design/methodology/approach

The hyperparameter domain is first derived and the dataset of hyperparameter and likelihood function is collected by Latin Hypercube Sampling. MIC values are innovatively calculated from the dataset and used as prior knowledge for optimizing hyperparameters. Then, an auxiliary parameter is introduced to establish the relationship between MIC values and hyperparameters. Next, the hyperparameters are obtained by transforming the optimized auxiliary parameter. Finally, to further improve the modeling accuracy, a novel local optimization step is performed to discover more suitable hyperparameters.

Findings

The proposed method is then applied to five representative mathematical functions with dimensions ranging from 20 to 100 and an engineering case with 30 design variables.

Originality/value

The results show that the proposed high-dimensional Kriging modeling method can obtain more accurate results than the other three methods, and it has an acceptable modeling efficiency. Moreover, the proposed method is also suitable for high-dimensional problems with limited sample points.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 23 November 2023

Reema Khaled AlRowais and Duaa Alsaeed

Automatically extracting stance information from natural language texts is a significant research problem with various applications, particularly after the recent explosion of…

222

Abstract

Purpose

Automatically extracting stance information from natural language texts is a significant research problem with various applications, particularly after the recent explosion of data on the internet via platforms like social media sites. Stance detection system helps determine whether the author agree, against or has a neutral opinion with the given target. Most of the research in stance detection focuses on the English language, while few research was conducted on the Arabic language.

Design/methodology/approach

This paper aimed to address stance detection on Arabic tweets by building and comparing different stance detection models using four transformers, namely: Araelectra, MARBERT, AraBERT and Qarib. Using different weights for these transformers, the authors performed extensive experiments fine-tuning the task of stance detection Arabic tweets with the four different transformers.

Findings

The results showed that the AraBERT model learned better than the other three models with a 70% F1 score followed by the Qarib model with a 68% F1 score.

Research limitations/implications

A limitation of this study is the imbalanced dataset and the limited availability of annotated datasets of SD in Arabic.

Originality/value

Provide comprehensive overview of the current resources for stance detection in the literature, including datasets and machine learning methods used. Therefore, the authors examined the models to analyze and comprehend the obtained findings in order to make recommendations for the best performance models for the stance detection task.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 25 July 2019

Xia Li, Ruibin Bai, Peer-Olaf Siebers and Christian Wagner

Many transport and logistics companies nowadays use raw vehicle GPS data for travel time prediction. However, they face difficult challenges in terms of the costs of information…

Abstract

Purpose

Many transport and logistics companies nowadays use raw vehicle GPS data for travel time prediction. However, they face difficult challenges in terms of the costs of information storage, as well as the quality of the prediction. This paper aims to systematically investigate various meta-data (features) that require significantly less storage space but provide sufficient information for high-quality travel time predictions.

Design/methodology/approach

The paper systematically studied the combinatorial effects of features and different model fitting strategies with two popular decision tree ensemble methods for travel time prediction, namely, random forests and gradient boosting regression trees. First, the investigation was conducted using pseudo travel time data that were generated using a pseudo travel time sampling algorithm, which allows generating travel time data using different noise processes so that the prediction performance under different travel conditions and noise characteristics can be studied systematically. The results and findings were then further compared and evaluated through a real-life case.

Findings

The paper provides empirical insights and guidelines about how raw GPS data can be reduced into a small-sized feature vector for the purposes of vehicle travel time prediction. It suggests that, add travel time observations from the previous departure time intervals are beneficial to the prediction, particularly when there is no other types of real-time information (e.g. traffic flow, speed) are available. It was also found that modular model fitting does not improve the quality of the prediction in all experimental settings used in this paper.

Research limitations/implications

The findings are primarily based on empirical studies on limited real-life data instances, and the results may lack generalisabilities. Therefore, the researchers are encouraged to test them further in more real-life data instances.

Practical implications

The paper includes implications and guidelines for the development of efficient GPS data storage and high-quality travel time prediction under different types of travel conditions.

Originality/value

This paper systematically studies the combinatorial feature effects for tree-ensemble-based travel time prediction approaches.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 49 no. 3
Type: Research Article
ISSN: 2059-5891

Keywords

Open Access
Book part
Publication date: 18 July 2022

Christian Versloot, Maria Iacob and Klaas Sikkel

Utility strikes have spawned companies specializing in providing a priori analyses of the underground. Geophysical techniques such as Ground Penetrating Radar (GPR) are harnessed…

Abstract

Utility strikes have spawned companies specializing in providing a priori analyses of the underground. Geophysical techniques such as Ground Penetrating Radar (GPR) are harnessed for this purpose. However, analyzing GPR data is labour-intensive and repetitive. It may therefore be worthwhile to amplify this process by means of Machine Learning (ML). In this work, harnessing the ADR design science methodology, an Intelligence Amplification (IA) system is designed that uses ML for decision-making with respect to utility material type. It is driven by three novel classes of Convolutional Neural Networks (CNNs) trained for this purpose, which yield accuracies of 81.5% with outliers of 86%. The tool is grounded in the available literature on IA, ML and GPR and is embedded into a generic analysis process. Early validation activities confirm its business value.

1 – 10 of 317