Search results

1 – 10 of 41
Article
Publication date: 18 May 2021

Selcuk Emiroglu, Akif Akgül, Yusuf Adıyaman, Talha Enes Gümüş, Yılmaz Uyaroglu and Mehmet Ali Yalçın

The purpose of this paper is to develop new four-dimensional (4D) hyperchaotic system by adding another state variable and linear controller to three-dimensional T chaotic…

Abstract

Purpose

The purpose of this paper is to develop new four-dimensional (4D) hyperchaotic system by adding another state variable and linear controller to three-dimensional T chaotic dynamical systems. Its dynamical analyses, circuit experiment, control and synchronization applications are presented.

Design/methodology/approach

A new 4D hyperchaotic attractor is achieved through a simulation, circuit experiment and mathematical analysis by obtaining the Lyapunov exponent spectrum, equilibrium, bifurcation, Poincaré maps and power spectrum. Moreover, hardware experimental measurements are performed and obtained results well validate the numerical simulations. Also, the passive control method is presented to make the new 4D hyperchaotic system stable at the zero equilibrium and synchronize the two identical new 4D hyperchaotic system with different initial conditions.

Findings

The passive controllers can stabilize the new 4D chaotic system around equilibrium point and provide the synchronization of new 4D chaotic systems with different initial conditions. The findings from Matlab simulations, circuit design simulations in computer and physical circuit experiment are consistent with each other in terms of comparison.

Originality/value

The 4D hyperchaotic system is presented, and dynamical analysis and numerical simulation of the new hyperchaotic system were firstly carried out. The circuit of new 4D hyperchaotic system is realized, and control and synchronization applications are performed.

Details

Circuit World, vol. 48 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 January 2020

Xiang Li, Zhijun Li and Zihao Wen

This paper aims to introduce a novel 4D hyperchaotic fractional-order system which can produce one-to-four-wing hyperchaotic attractors. In the study of chaotic systems with…

Abstract

Purpose

This paper aims to introduce a novel 4D hyperchaotic fractional-order system which can produce one-to-four-wing hyperchaotic attractors. In the study of chaotic systems with variable-wing attractors, although some chaotic systems can generate one-to-four-wing attractors, none of them are hyperchaotic attractors, which is incomplete for the dynamic characteristics of chaotic systems.

Design/methodology/approach

A novel 4D fractional-order hyperchaotic system is proposed based on the classical three-dimensional Lü system. The complex and abundant dynamic behaviors of the fractional-order system are analyzed by phase diagrams, bifurcation diagrams and the corresponding Lyapunov exponents. In addition, SE and C0 algorithms are used to analyze the complexity of the fractional-order system. Then, the influence of order q on the system is also investigated. Finally, the circuit is implemented using physical components.

Findings

The most particular interest is that the system can generate one-to-four-wing hyperchaotic attractors with only one parameter variation. Then, the hardware circuit experimental results tally with the numerical simulations, which proves the validity and feasibility of the fractional-order hyperchaotic system. Besides, under different initial conditions, coexisting attractors can be obtained by changing the parameter d or the order q. Then, the complexity analysis of the system shows that the fractional-order chaotic system has higher complexity than the corresponding integer-order chaotic system.

Originality/value

The circuit structure of the fractional-order hyperchaotic system is simple and easy to implement, and one-to-four-wing hyperchaotic attractors can be observed in the circuit. To the best of the knowledge, this unique phenomenon has not been reported in any literature. It is of great reference value to analysis and circuit realization of fractional-order chaotic systems.

Details

Circuit World, vol. 46 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 9 November 2015

Ping He and Yangmin Li

– The purpose of this paper is to study the control and synchronization of the hyperchaotic finance system.

Abstract

Purpose

The purpose of this paper is to study the control and synchronization of the hyperchaotic finance system.

Design/methodology/approach

A single controller scheme is introduced. The Routh-Hurwitz criteria and the structure of solution of first-order linear differential equations are adopted in analysis of control and synchronization.

Findings

Two single controllers are designed and added to the new hyperchaotic finance system. The stability of the hyperchaotic finance system at its zero equilibrium point is guaranteed by applying the appropriate single controller signal based on Routh-Hurwitz criteria. Another effective controller is also designed for the global asymptotic synchronization on the hyperchaotic finance system based on the structure of solution of first-order linear differential equations. Numerical simulations are demonstrated to verify the effectiveness of the proposed single controller scheme.

Originality/value

The introduced approach is interesting for control and synchronization the hyperchaotic finance system.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 8 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 4 January 2021

Meiting Liu, Wenxin Yu, Junnian Wang, Yu Chen and Yuyan Bian

In this paper, a nine-dimensional chaotic system is designed and applied to secure communication.

Abstract

Purpose

In this paper, a nine-dimensional chaotic system is designed and applied to secure communication.

Design/methodology/approach

Firstly, the equilibrium characteristics, dissipativity, bifurcation diagram and Lyapunov exponent spectrum are used to analyze the relevant characteristics of the proposed nine-dimensional chaotic system. In the analysis of Lyapunov exponential spectrum, when changing the linear parameters, the system shows two states, hyperchaos and chaos. For secure communication, there is a large secret key space. Secondly, C0 complexity and SEcomplexity of the system are analyzed, which shows that the system has sequences closer to random sequences.

Findings

The proposed nine-dimensional system has a large key space and more complex dynamic characteristics

Originality/value

The results show that the proposed nine-dimensional hyperchaotic system has excellent encryption capabilities and can play an important role in the field of secure communication.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 14 August 2020

F.J. Farsana, V.R. Devi and K. Gopakumar

This paper introduces an audio encryption algorithm based on permutation of audio samples using discrete modified Henon map followed by substitution operation with keystream…

1573

Abstract

This paper introduces an audio encryption algorithm based on permutation of audio samples using discrete modified Henon map followed by substitution operation with keystream generated from the modified Lorenz-Hyperchaotic system. In this work, the audio file is initially compressed by Fast Walsh Hadamard Transform (FWHT) for removing the residual intelligibility in the transform domain. The resulting file is then encrypted in two phases. In the first phase permutation operation is carried out using modified discrete Henon map to weaken the correlation between adjacent samples. In the second phase it utilizes modified-Lorenz hyperchaotic system for substitution operation to fill the silent periods within the speech conversation. Dynamic keystream generation mechanism is also introduced to enhance the correlation between plaintext and encrypted text. Various quality metrics analysis such as correlation, signal to noise ratio (SNR), differential attacks, spectral entropy, histogram analysis, keyspace and key sensitivity are carried out to evaluate the quality of the proposed algorithm. The simulation results and numerical analyses demonstrate that the proposed algorithm has excellent security performance and robust against various cryptographic attacks.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 13 October 2022

Aruna Kumari Koppaka and Vadlamani Naga Lakshmi

In the cloud-computing environment, privacy preservation and enabling security to the cloud data is a crucial and demanding task. In both the commercial and academic world, the…

Abstract

Purpose

In the cloud-computing environment, privacy preservation and enabling security to the cloud data is a crucial and demanding task. In both the commercial and academic world, the privacy of important and sensitive data needs to be safeguarded from unauthorized users to improve its security. Therefore, several key generations, encryption and decryption algorithms are developed for data privacy preservation in the cloud environment. Still, the outsourced data remains with the problems like minimum data security, time consumption and increased computational complexity. The purpose of this research study is to develop an effective cryptosystem algorithm to secure the outsourced data with minimum computational complexity.

Design/methodology/approach

A new cryptosystem algorithm is proposed in this paper to address the above-mentioned concerns. The introduced cryptosystem algorithm has combined the ElGamal algorithm and hyperchaotic sequence, which effectively encrypts the outsourced data and diminishes the computational complexity of the system.

Findings

In the resulting section, the proposed improved ElGamal cryptosystem (IEC) algorithm performance is validated using the performance metrics like encryption time, execution time, decryption time and key generation comparison time. The IEC algorithm approximately reduced 0.08–1.786 ms of encryption and decryption time compared to the existing model: secure data deletion and verification.

Originality/value

The IEC algorithm significantly enhances the data security in cloud environments by increasing the power of key pairs. In this manuscript, the conventional ElGamal algorithm is integrated with the pseudorandom sequences for a pseudorandom key generation for improving the outsourced cloud data security.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 10 December 2020

Muhammad Haris, Muhammad Shafiq, Adyda Ibrahim and Masnita Misiran

The purpose of this paper is to develop some interesting results in the field of chaotic synchronization with a new finite-time controller to reduce the time of convergence.

Abstract

Purpose

The purpose of this paper is to develop some interesting results in the field of chaotic synchronization with a new finite-time controller to reduce the time of convergence.

Design/methodology/approach

This article proposes a finite-time controller for the synchronization of hyper(chaotic) systems in a given time. The chaotic systems are perturbed by the model uncertainties and external disturbances. The designed controller achieves finite-time synchronization convergence to the steady-state error without oscillation and elimination of the nonlinear terms from the closed-loop system. The finite-time synchronization convergence reduces the hacking duration and recovers the embedded message in chaotic signals within a given preassigned limited time. The free oscillation convergence keeps the energy consumption low and alleviates failure chances of the actuator. The proposed finite-time controller is a combination of linear and nonlinear parts. The linear part keeps the stability of the closed-loop, the nonlinear part increases the rate of convergence to the origin. A generalized form of analytical stability proof is derived for the synchronization of chaotic and hyper-chaotic systems. The simulation results provide the validation of the accomplish synchronization for the Lu chaotic and hyper-chaotic systems.

Findings

The designed controller not only reduces the time of convergence without oscillation of the trajectories which can run the system for a given time domain.

Originality/value

This work is originally written by the author.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 October 2018

Bocheng Bao, Jiaoyan Luo, Han Bao, Quan Xu, Yihua Hu and Mo Chen

The purpose of this paper is to construct a proportion-integral-type (PI-type) memristor, which is different from that of the previous memristor emulator, but the constructing…

Abstract

Purpose

The purpose of this paper is to construct a proportion-integral-type (PI-type) memristor, which is different from that of the previous memristor emulator, but the constructing memristive chaotic circuit possesses line equilibrium, leading to the emergence of the initial conditions-related dynamical behaviors.

Design/methodology/approach

This paper presents a PI-type memristor emulator-based canonical Chua’s chaotic circuit. With the established mathematical model, the stability region for the line equilibrium is derived, which mainly consists of stable and unstable regions, leading to the emergence of bi-stability because of the appearance of a memristor. Initial conditions-related dynamical behaviors are investigated by some numerically simulated methods, such as phase plane orbit, bifurcation diagram, Lyapunov exponent spectrum, basin of the attraction and 0-1 test. Additionally, PSIM circuit simulations are executed and the seized results validate complex dynamical behaviors in the proposed memristive circuit.

Findings

The system exhibits the bi-stability phenomenon and demonstrates complex initial conditions-related bifurcation behaviors with the variation of system parameters, which leads to the occurrence of the hyperchaos, chaos, quasi-periodic and period behaviors in the proposed circuit.

Originality/value

These memristor emulators are simple and easy to physically fabricate, which have been increasingly used for experimentally demonstrating some interesting and striking dynamical behaviors in the memristor-based circuits and systems.

Details

Circuit World, vol. 44 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 10 November 2022

Xinxing Yin, Juan Chen, Wenxin Yu, Yuan Huang, Wenxiang Wei, Xinjie Xiang and Hao Yan

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural…

Abstract

Purpose

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural network (5D-HNN) to secure communication will greatly improve the confidentiality of signal transmission and greatly enhance the anticracking ability of the system.

Design/methodology/approach

Chaos masking: Chaos masking is the process of superimposing a message signal directly into a chaotic signal and masking the signal using the randomness of the chaotic output. Synchronous coupling: The coupled synchronization method first replicates the drive system to get the response system, and then adds the appropriate coupling term between the drive The synchronization error and the coupling term of the system will eventually converge to zero with time. The synchronization error and coupling term of the system will eventually converge to zero over time.

Findings

A 5D memristive neural network is obtained based on the original four-dimensional memristive neural network through the feedback control method. The system has five equations and contains infinite balance points. Compared with other systems, the 5D-HNN has rich dynamic behaviors, and the most unique feature is that it has multistable characteristics. First, its dissipation property, equilibrium point stability, bifurcation graph and Lyapunov exponent spectrum are analyzed to verify its chaotic state, and the system characteristics are more complex. Different dynamic characteristics can be obtained by adjusting the parameter k.

Originality/value

A new 5D memristive HNN is proposed and used in the secure communication

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 25 March 2021

Fareed Sheriff

This paper presents the Edge Load Management and Optimization through Pseudoflow Prediction (ELMOPP) algorithm, which aims to solve problems detailed in previous algorithms;…

1985

Abstract

Purpose

This paper presents the Edge Load Management and Optimization through Pseudoflow Prediction (ELMOPP) algorithm, which aims to solve problems detailed in previous algorithms; through machine learning with nested long short-term memory (NLSTM) modules and graph theory, the algorithm attempts to predict the near future using past data and traffic patterns to inform its real-time decisions and better mitigate traffic by predicting future traffic flow based on past flow and using those predictions to both maximize present traffic flow and decrease future traffic congestion.

Design/methodology/approach

ELMOPP was tested against the ITLC and OAF traffic management algorithms using a simulation modeled after the one presented in the ITLC paper, a single-intersection simulation.

Findings

The collected data supports the conclusion that ELMOPP statistically significantly outperforms both algorithms in throughput rate, a measure of how many vehicles are able to exit inroads every second.

Originality/value

Furthermore, while ITLC and OAF require the use of GPS transponders and GPS, speed sensors and radio, respectively, ELMOPP only uses traffic light camera footage, something that is almost always readily available in contrast to GPS and speed sensors.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 41