Search results

1 – 10 of 380
Article
Publication date: 4 January 2022

Shayma T.G. Al-Sahlany and Alaa K. Niamah

The purpose of this study was to assess the bacterial viability, antioxidative activity, antimutagenicity and sensory evaluation of fermented onion types by using probiotic…

Abstract

Purpose

The purpose of this study was to assess the bacterial viability, antioxidative activity, antimutagenicity and sensory evaluation of fermented onion types by using probiotic starters after fermentation at 37 °C for 24 hours and storage in the refrigerator for 28 days.

Design/methodology/approach

For onion fermentation, Lactobacillus acidophilus (LA-5), Bifidobacterium bifidum (BB-12), and Streptococcus thermophilus (ST) were utilised. This research was conducted on three types of onion: white onion, red onion and scallion. With a 5% brine solution, the onions were sliced into 3-5 cm long and 1-2 cm wide slices. The process of fermentation was achieved by adding 2% (108 CFU/ gm) of fresh probiotic starter and incubating it for 24 hours at 37 °C. The fermented onion samples were kept in the refrigerator for 28 days. After fermentation and storage, the pH and total acidity were estimated, the vitality of probiotic bacteria was evaluated in samples of the onion species. The Gas chromatography-mass spectrometry (GC-MS) technique was used to identify the bioactive components in fermented onion types. The antioxidant activity of fermented onions was measured using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity assay and the hydroxyl radical scavenging activity test. The Ames test was used to detect the antimutagenicity of fermented onion samples.

Findings

After fermentation, the fermented scallion (p = 0.036) has the highest vitality of all the starter bacteria species. The fermentation of onion types produced a pH of between 4.1–4.7 and 0.19–0.23% total acidity, which is in the range of reduced 3.1–3.5 pH values and 0.42–0.63% total acidity after 28 days. The viability of Lactobacillus acidophilus and Bifidobacterium bifidum in fermented scallions was Log. 7.79 and 7.57 CFU/gm. The GC-MS technique found 14 bioactive compounds in fermented white onions and 13 compounds in fermented white onions, with 15 compounds in scallion fermentation. The majority of these bioactive compounds are strong antioxidants. The antioxidant properties of fermented scallion significantly increased after 28 days of storage time, showing an inhibitory effect on the DPPH assay (p = 0.02) and the scavenging activity of the hydroxyl radical assay (p = 0.01). Sensory evaluation tests revealed that the fermented scallion was a suitable product in terms of appearance, aroma and overall acceptability.

Originality/value

Commercially accessible probiotic foods account for a sizable portion of the consumer market. Furthermore, as consumer interest in healthy eating grows, so does demand for plant-based goods. All onion types fermented with probiotic bacteria have many chemical compounds that have both antioxidant and carcinogenic activity. The fermented scallion onion sample was significantly superior to the rest of the other types of onions.

Details

Nutrition & Food Science , vol. 52 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 15 November 2018

Huawei Zeng, Qiao Jie, Zeng Xin, Xu Dayong, Xiong Minghua, Li Feng, Sun Jianfan, Jiang Xuan and Dai Chuanyun

Monascus pigment was widely applied in food processing industry as functional additive, so more attention was paid to the fermentation optimization of pigment production…

Abstract

Purpose

Monascus pigment was widely applied in food processing industry as functional additive, so more attention was paid to the fermentation optimization of pigment production. Therefore, this paper aims to evaluate the best possible fermentative conditions for maximum production of biopigment using submerged fermentation (SFM) and solid state fermentation (SSF) by Monascus purpureus HBSD 08.

Design/methodology/approach

The biopigment was produced by using an SMF and an SSF with optimized substrate to achieve higher yield. The antioxidant activity was evaluated by DPPH radical scavenging ability, superoxide anion radical scavenging ability and hydroxyl radical scavenging ability. The pigment composition was analyzed by thin layer chromatography.

Findings

Maximum Monascus pigment production (79.6 U/ml and 1,102 U/g) were obtained under an SFM and an SFF. The antioxidant activity of the pigment in an SFM was significantly higher than that in an SFM. The composition of pigment was not different in an SFM and an SFF.

Originality/value

The study developed new conditions, and Monascus strain was a candidate for producing pigment in an SFM and an SFF. To the authors’ best knowledge, this is a first attempt toward comparative evaluation on antioxidant capacity and composition between pigment in an SSF and an SFM. This result will serve for Monascus pigment production.

Article
Publication date: 3 July 2009

Andrew Manning, Anna Fricker and Robert Thompson

The purpose of this paper is to explore the previously unreported phenomenon in which changes occur to the particle size distributions of calcium carbonate fillers, used in…

Abstract

Purpose

The purpose of this paper is to explore the previously unreported phenomenon in which changes occur to the particle size distributions of calcium carbonate fillers, used in papermaking, when exposed to high intensity ultrasound.

Design/methodology/approach

Commercial paper pulps sonicated at a frequency of 20 kHz are found to produce aggregates of their mineral filler constituents. The effects of sonication on isolated long and short fibre, and ground and precipitated calcium carbonate filler systems are also investigated both with and without the presence of dispersants. The findings are supported by particle size analysis and scanning electron microscopy of the sonicated systems.

Findings

It is clearly shown that exposure to high intensity ultrasound induces filler aggregation. However, the effect only occurs when paper fibres and fillers coexist and is not apparent for suspensions of filler only or fibre only slurries. Furthermore, the treatment overrides the effect of dispersants used to keep filler in suspension during the manufacturing process. An accompanying fall in pH with increasing sonication times is also noted and is linked to these changes. It is proposed that radical species produced in the slurries during sonication may explain the observed phenomenon.

Research limitations/implications

The role of pH is not clearly understood and needs further study.

Practical implications

The findings may be of interest in paper manufacture where uniform dispersal of fillers throughout the pulp is of significant importance.

Originality/value

The phenomenon described in this paper has not previously been reported or explored. Further studies may add to knowledge of filler dispersions and their behaviour in papermaking.

Details

Pigment & Resin Technology, vol. 38 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 April 2020

Maryam Khashij, Mohammad Mehralian and Zahra Goodarzvand Chegini

The purpose of this study to investigate acetaminophen (ACT) degradation efficiencies by using ozone/persulfate oxidation process in a batch reactor. In addition, the effects of…

Abstract

Purpose

The purpose of this study to investigate acetaminophen (ACT) degradation efficiencies by using ozone/persulfate oxidation process in a batch reactor. In addition, the effects of various parameters on the ACT removal efficiency toward pathway inference of ACT degradation were investigated.

Design/methodology/approach

The experiments were in the 2 L glass vessels. Ozone gas with flow rate at 70 L.h−1 was produced by ozone generator. After the adjustment of the pH, various dosages of persulfate (1, 3, 5, 7 and 9 mmol.L−1) were then added to the 500 mL ACT-containing solution with 150 mg.L−1 of concentration. Afterward, ozone gas was diffused in glass vessels. The solution after reaction flowed into the storage tank for the detection. The investigated parameters included pH and the amount of ozone and persulfate addition. For comparison of the ACT degradation efficiency, ozone/persulfate, ozone and persulfate oxidation in reactor was carried out. The ACT concentration using a HPLC system equipped with 2998 PDA detector was determined at an absorbance of 242 nm.

Findings

ACT degradation percentage by using ozone or persulfate in the process were at 63.7% and 22.3%, respectively, whereas O3/persulfate oxidation process achieved degradation percentage at 91.4% in 30 min. Degradation efficiency of ACT was affected by different parameter like pH and addition of ozone or persulfate, and highest degradation obtained when pH and concentrations of persulfate and ozone was 10 and 3 mmol.L−1 and 60 mg.L−1, respectively. O3, OH and SO4− were evidenced to be the radicals for degradation of ACT through direct and indirect oxidation. Gas chromatography–mass spectrometer analysis showed intermediates including N-(3,4-dihydroxyphenyl) formamide, hydroquinone, benzoic acid, 4-methylbenzene-1,2-diol, 4-aminophenol.

Practical implications

This study provided a simple and effective way for degradation of activated ACT as emerging contaminants from aqueous solution. This way was conducted to protect environment from one of the most important and abundant pharmaceutical and personal care product in aquatic environments.

Originality/value

There are two main innovations. One is that the novel process is performed successfully for pharmaceutical degradation. The other is that the optimized conditions are obtained. In addition, the effects of various parameters on the ACT removal efficiency toward pathway inference of ACT degradation were investigated.

Details

Pigment & Resin Technology, vol. 49 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 1989

C. Lea

An earlier paper gave the background to the rôle of chlorofluorocarbons (CFCs) in the observed depletion of the Earth's stratospheric ozone, plus details of the Montreal Protocol…

Abstract

An earlier paper gave the background to the rôle of chlorofluorocarbons (CFCs) in the observed depletion of the Earth's stratospheric ozone, plus details of the Montreal Protocol that restricts the production and consumption of CFCs. In this paper, recent data on both the ozone depletion and the global greenhouse warming that result from CFC emissions are given. The progress by the chemical companies to identify replacements for CFCs is also discussed.

Details

Circuit World, vol. 15 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 April 1977

G.C. Smith

Alkyd paints make up two thirds of the paints made in Australia and in fact three quarters of the paint used by the Armed Services is alkyd based. It can be seen, therefore, that…

Abstract

Alkyd paints make up two thirds of the paints made in Australia and in fact three quarters of the paint used by the Armed Services is alkyd based. It can be seen, therefore, that increasing the service life of alkyd paints would effect considerable savings both to our defence effort and to the community at large. Photodegradation is a major cause in the reduction of a paints service life. It may cause chalking, checking, cracking, blistering and embrittlement and these in turn may lead to loss of adhesion. This could allow water, oxygen, air pollutants and grit to attack the underlying substrate causing corrosion and possibly loss of expensive equipment.

Details

Pigment & Resin Technology, vol. 6 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 9 May 2016

Maryam Sardarodiyan and Ali Mohamadi Sani

The study aims to describe the main classes of antioxidants existing in fruit, beverages, vegetables and herbs and the different extraction and application of antioxidants in…

Abstract

Purpose

The study aims to describe the main classes of antioxidants existing in fruit, beverages, vegetables and herbs and the different extraction and application of antioxidants in food. Oxidative degradation of lipids, especially induced by reactive oxygen species, leads to quality deterioration of foods and cosmetics and could have harmful effects on health. A major challenge is to develop tools to assess the antioxidant capacity and real efficacy of these molecules. Recently, many review papers regarding antioxidants from different sources and different extraction and quantification procedures have been published. However, none of them has all the information regarding antioxidants (sources, extraction and application in food).

Design/methodology/approach

This paper tries to take a different perspective on antioxidants for the new researcher involved in this field.

Findings

Antioxidants from fruit, vegetables and beverages play an important role in human health, for example, preventing cancer and cardiovascular diseases and lowering the incidence of different diseases. A number of plant products act as scavengers of free radical species and so have been classified as antioxidants. Antioxidants are an important group of food additives that have the ability to protect against detrimental change of oxidizable nutrients and consequently they extend shelf-life of foods.

Research limitations/implications

Most of the antioxidants present in foods are phenolic and polyphenolic compounds, but their efficacy in food for the prevention of oxidation or in the body for dealing with oxidative stress and its consequences depends on different factors.

Originality/value

This study collected the last finding in the field of sources and applications of natural antioxidants.

Details

Nutrition & Food Science, vol. 46 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 19 October 2018

Marli Busanello, Marsilvio Lima De Moraes Filho, Karla Bigetti Guergoletto and Sandra Garcia

This paper aims to study the effect of addition of green banana flour (GBF) in skim milk, provides a nutritional and functional contribution to this matrix when added. They have…

274

Abstract

Purpose

This paper aims to study the effect of addition of green banana flour (GBF) in skim milk, provides a nutritional and functional contribution to this matrix when added. They have biological compounds like resistant starch, phenolic compounds, antioxidant compounds and others. The skim milk containing 1.08 per cent of GBF was chosen after a central composite rotational design and response surface methodology. The response variable was the growth of Lactobacillus plantarum (LP) and Lactobacillus helveticus (LH).

Design/methodology/approach

During the fermentation process, the antioxidant activity, plasmid DNA protection capacity, proteolytic activity and inhibitory activity of angiotensin-converting enzyme (ACE) of the fermented milk was determined.

Findings

All variables were influenced by the fermentation time. The antioxidant activity evaluated by the ABTS radical presented values of 0.83 ± 0.04 µM Trolox.mL−1 and 0.79 ± 0.02 µM Trolox.mL−1, respectively, for the fermented LP and LH. The extracts fermented by L. plantarum and L. helveticus were able to inhibit the oxidation of plasmidial DNA. The proteolytic activity was higher in the fermented with LH (1.16 ± 0.03) than in the fermented with LP (0.71 ± 0.02). The ACE inhibitory activity was higher in the fermented LH (59.01 per cent) than in the fermented LP (54.45 per cent).

Originality/value

Fermented milk with 1.08 per cent GBF presented positive results in the analyzed variables and could be studied commercially as a functional food alternative.

Details

Nutrition & Food Science, vol. 49 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 5 July 2023

Khaled Mostafa, Nader Abdelaziz and Azza El-Sanabary

The purpose of this study is to undertake surface graft copolymerization of viscose fabric via altering its fibrous properties by using acrylic acid (AA) as a carboxyl-containing…

Abstract

Purpose

The purpose of this study is to undertake surface graft copolymerization of viscose fabric via altering its fibrous properties by using acrylic acid (AA) as a carboxyl-containing monomer and peroxydisulfate (PDS) in presence of ferrous sulfate as a novel redox pair for initiating grafting. The latter process acted as an energy-saving process with respect to the reduction in polymerization temperature and maximizing the graft yield %, in addition to rendering the grafted viscose fabrics dye-able with cationic dye (crystal violet), which has frequently no direct affinity to fix on fabric.

Design/methodology/approach

To make graft copolymerization more efficient and economic, the optimum conditions for graft copolymerization were established. The graft yield % was determined as a function of initiator, catalyst and monomer concentrations and the material to liquor ratio, in addition to polymerization time and temperatures. Metrological characterizations via Fourier transform infrared spectroscopy and scanning electron microscopy of topographic morphological surface change have also been established in comparison with the ungrafted samples.

Findings

The maximum graft yield of 70.6% is obtained at the following optimum conditions: monomer (150 % based on the weight of fabric), PDS (50 m mole), ferrous sulfate (80 m mole) and sulfuric acid (30 m mole) at 40° C for 1.5 h using a liquor ratio of 30. Remarkably, grafting with AA enabled a multifold upsurge in color strength, with improvements in the fastness properties of cationically dyed grafted viscose fabric measured on the blue scale in comparison with untreated viscose fabric.

Originality/value

The novelty addressed here is undertaken with studying the effect of altering the extent of grafting of poly (AA)-viscose graft copolymers expressed as graft yield % in addition to carboxyl contents on cationic dyeing of viscose fabric for the first time in the literature. Moreover, rendering the viscose fabrics after grafting is dye-able with cationic dye with high brilliance of shades, which has regularly no direct affinity to fix on this type of fabrics.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 March 2016

S. O. Salawu, O. F. Alao, O. F. Faloye, A. A. Akindahunsi, A. A. Boligon and M. L. Athayde

The purpose of this paper is to focus on the antioxidant properties of two phenolic-rich varieties of Nigerian local rice and their anti-cholinesterase potential after in vitro

Abstract

Purpose

The purpose of this paper is to focus on the antioxidant properties of two phenolic-rich varieties of Nigerian local rice and their anti-cholinesterase potential after in vitro-simulated gastrointestinal digestion, with the aim of establishing their actual antioxidant and nutraceutical potential after their passage through the gastrointestinal tract upon consumption.

Design/methodology/approach

Two local rice varieties, commonly referred to as “Gboko” and “Ofada” rice commonly grown in Benue State, a middle belt region of Nigeria and south western regions of Nigeria, respectively, were locally processed. Each of the processed grains were divided into two portions; one portion was left uncooked, while the second portion was boiled conventionally as eaten, dried and subsequently milled into powder. The milled samples of the raw and boiled rice were treated with acidified methanol to obtain the methanol extracts; another portion of each samples was subjected to in vitro enzyme digestion using standard methods to mimic human digestion; and the third portion was treated using the same scheme of in vitro digestion without the sets of enzyme which was used to serve as a control for enzyme treatment. The quali-quantitative phenolic profiles of the two local varieties were carried out with the aid of high-performance liquid chromatography with diode-array detection (HPLC-DAD) method. The antioxidant potential and anti-cholinesterase action of the methanolic extracts, the simulated in vitro digested model and the enzyme-treated controls of the rice samples were determined using standard methods and data obtained were subjected to ANOVA; the differences of means were separated using Duncan’s multiple range test (DMRT).

Findings

The quali-quantitative assessment of phenolic compounds in the two studied local varieties revealed the presence of some phenolic acids and flavonoids, with a decreased level of most of the identified phenolic compounds after boiling. In vitro enzyme-digested rice for both raw and boiled rice samples showed significantly higher total phenolic content, total flavonoid content, ferric-reducing antioxidant power, 2, 2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS+) scavenging and NO− inhibitory activities than the aqueous-methanolic extracts and the enzyme-treated controls. The aqueous-methanolic extracts displayed a higher 1, 1 diphenyl-2-picrylhdrazyl radical scavenging activity and inhibited Fe2+-induced lipid oxidation in rat’s brain and liver homogenate than that displayed by the in vitro enzyme-digested samples. In vitro enzyme-digested and boiled “Gboko” and “Ofada” rice and raw “Ofada” rice have the potential of inhibiting acetylcholine esterase (AChE) activity. While methanolic extracts of raw and boiled “Ofada” and “Gboko” rice exhibited the potential to inhibit butrylcholinesterase activity. The result of this paper indicates that the selected rice varieties possess antioxidant capacities which are better released after the simulated in vitro enzyme digestion; the result also showed the anti-cholinesterase potential of the studied rice grains and, therefore, they can be considered as nutraceutical health supplements.

Originality/value

The paper has demonstrated the antioxidant potentials of the phenolic-containing two Nigerian local rice varieties and established their anti-cholinesterase potential after simulated in vitro enzyme digestion.

Details

Nutrition & Food Science, vol. 46 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 10 of 380