Search results

1 – 10 of 47
Content available
Article
Publication date: 9 January 2009

74

Abstract

Details

Pigment & Resin Technology, vol. 38 no. 1
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 9 January 2009

85

Abstract

Details

Pigment & Resin Technology, vol. 38 no. 1
Type: Research Article
ISSN: 0369-9420

Open Access
Article
Publication date: 14 March 2024

Chongjun Wu, Yutian Chen, Xinyi Wei, Junhao Xu and Dongliu Li

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is…

Abstract

Purpose

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is mainly focused on analyzing the forming mechanism of equipment and factors affecting the forming quality and accuracy, investigating the influence of forming process parameters on the printing quality and optimization of the printing quality. This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Design/methodology/approach

The µ-SLA process is optimized based on the variable cross-section micro-cone structure printing. Multi-index analysis method was used to analyze the influence of process parameters. The process parameter influencing order is determined and validated with flawless micro array structure.

Findings

After the optimization analysis of the top diameter size, the bottom diameter size and the overall height, the influence order of the printing process parameters on the quality of the micro-cone forming is: exposure time (B), print layer thickness (A) and number of vibrations (C). The optimal scheme is A1B3C1, that is, the layer thickness of 5 µm, the exposure time of 3000 ms and the vibration of 64x. At this time, the cone structure with the bottom diameter of 50 µm and the cone angle of 5° could obtain a better surface structure.

Originality/value

This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 17 October 2022

Qianqian Li, Bo Zhang, Tao Yang, Qingwen Dai, Wei Huang and Xiaolei Wang

The purpose of this paper is to artificially construct a functional surface with self-propulsion flow characteristics for the directional transportation of propellant in surface

Abstract

Purpose

The purpose of this paper is to artificially construct a functional surface with self-propulsion flow characteristics for the directional transportation of propellant in surface tension tanks.

Design/methodology/approach

In this study, a method to enhance the propulsion efficiency by using functional surfaces of self-propulsion performance was proposed. Superhydrophilic wedged-groove with the superhydrophobic background was fabricated and the self-propulsion capacity was verified.

Findings

It is found that the self-propulsion capacity is related to the divergence angle of the wedged-groove in the hydrophilic area, and the velocity of the droplets on the deflector plate is the largest with the divergence angle of 4°; the temperature gradient field formed by the condensing device at the nozzle can accelerate the droplet outflow from the tank.

Originality/value

Realization of this idea provides an accurate control strategy for the complex flow process of propellant in plate surface tension tanks, which could enhance the efficiency of the tension tank significantly.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 30 January 2007

137

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 2
Type: Research Article
ISSN: 0002-2667

Open Access
Article
Publication date: 10 October 2018

Chander Prakash, Sunpreet Singh, Ilenia Farina, Fernando Fraternali and Luciano Feo

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently…

1125

Abstract

Purpose

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently, biodegradable material possessing such superior properties has been the focus with an aim of revolutionizing implant’s design, material and performance. This paper aims to present a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by mechanical alloying and spark plasma sintering (MA-SPS) technique.

Design/methodology/approach

This paper presents a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by MA-SPS technique. As the key alloying elements, HA powders with an appropriate proportion weight 5 and 10 are mixed with the base elemental magnesium (Mg) particles to form the composites of potentially variable porosity and mechanical property. The aim is to investigate the performance of the synthesized composites of Mg-3Si together with HA in terms of mechanical integrity hardness and Young’s moduli corrosion resistance and in-vitro bioactivity.

Findings

Mechanical and surface characterization results indicate that alloying of Si leads to the formation of fine Mg2 Si eutectic dense structure, hence increasing hardness while reducing the ductility of the composite. On the other hand, the allying of HA in Mg-3Si matrix leads to the formation of structural porosity (5-13 per cent), thus resulting in low Young’s moduli. It is hypothesized that biocompatible phases formed within the composite enhanced the corrosion performance and bio-mechanical integrity of the composite. The degradation rate of Mg-3Si composite was reduced from 2.05 mm/year to 1.19 mm/year by the alloying of HA elements. Moreover, the fabricated composites showed an excellent bioactivity and offered a channel/interface to MG-63 cells for attachment, proliferation and differentiation.

Originality/value

Overall, the findings suggest that the Mg-3Si-HA composite fabricated by MA and plasma sintering may be considered as a potential biodegradable material for orthopedic application.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 1 July 2020

Milena Kiliszkiewicz, Dariusz Przybylski, Jan Felba and Ryszard Korbutowicz

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive…

743

Abstract

Purpose

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive and dielectric layers are examined. Moreover, the capacitances of the obtained capacitors were examined.

Design/methodology/approach

Surface roughness and microscopic analysis were used to assess the quality of printed conductive structures. Two criteria were used to assess the quality of printed dielectric structures: the necessary lack of discontinuity of layers and minimal roughness. To determine the importance of printing parameters, a draft experimental method was proposed.

Findings

The optimal way to clean the substrate has been determined. The most important parameters for the dielectric layer (i.e. drop-space, table temperature, curing time and temperature) were found.

Research limitations/implications

If dielectric layers are printed correctly, most problems with printing complex electronic structures (transistors, capacitors) will be eliminated.

Practical implications

The tests performed identified the most important factors for dielectric layers. Using them, capacitors of repeatable capacity were printed.

Originality/value

In the literature on this subject, no factors were found which were responsible for obtaining homogeneous dielectric layers.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 26 April 2013

246

Abstract

Details

Microelectronics International, vol. 30 no. 2
Type: Research Article
ISSN: 1356-5362

Content available
Article
Publication date: 9 November 2010

Craig Henry

283

Abstract

Details

Strategy & Leadership, vol. 38 no. 6
Type: Research Article
ISSN: 1087-8572

Content available
Article
Publication date: 27 March 2009

598

Abstract

Details

Sensor Review, vol. 29 no. 2
Type: Research Article
ISSN: 0260-2288

1 – 10 of 47