Search results

1 – 10 of 112
Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 September 2023

Bifu Xiong, Siliang He, Jinguo Ge, Quantong Li, Chuan Hu, Haidong Yan and Yu-An Shen

This paper aims to examine the effects of bonding temperature, bonding time, bonding pressure and the presence of a Pt catalyst on the bonding strength of Cu/SB/P-Cu/SB/Cu joints…

Abstract

Purpose

This paper aims to examine the effects of bonding temperature, bonding time, bonding pressure and the presence of a Pt catalyst on the bonding strength of Cu/SB/P-Cu/SB/Cu joints by transient liquid phase bonding (TLPB).

Design/methodology/approach

TLPB is promising to assemble die-attaching packaging for power devices. In this study, porous Cu (P-Cu) foil with a distinctive porous structure and Sn-58Bi solder (SB) serve as the bonding materials for TLPB under a formic acid atmosphere (FA). The high surface area of P-Cu enables efficient diffusion of the liquid phase of SB, stimulating the wetting, spreading and formation of intermetallic compounds (IMCs).

Findings

The higher bonding temperature decreased strength due to the coarsening of IMCs. The longer bonding time reduced the bonding strength owing to the coarsened Bi and thickened IMC. Applying optimal bonding pressure improved bonding strength, whereas excessive pressure caused damage. The presence of a Pt catalyst enhanced bonding efficiency and strength by facilitating reduction–oxidation reactions and oxide film removal.

Originality/value

Overall, this study demonstrates the feasibility of low-temperature TLPB for Cu/SB/P-Cu/SB/Cu joints and provides insights into optimizing bonding strength for the interconnecting materials in the applications of power devices.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 January 2024

Hung Ngoc Phan and Satoko Okubayashi

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC…

Abstract

Purpose

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC modification method using glycerol and succinic acid with catalyst and heat, applied via an industrially scalable padding method to tackle BC’s stiffness drawbacks and enhance BC properties.

Design/methodology/approach

Fabric-like BC is generated via mechanical dehydration and then finished by using padding method with glycerol, succinic acid, catalyst and heat. Comprehensive material characterizations, including international testing standards for stiffness, bending properties (cantilever method), tensile properties, moisture vapor transmission rate, moisture content and regain, washing, thermal gravimetric analysis, derivative thermogravimetry, Fourier-transform infrared spectroscopy and colorimetric measurement, are used.

Findings

The combination of BC/glycerol/succinic acid dramatically enhanced porous structure, elongation (27.40 ± 6.39%), flexibility (flexural rigidity of 21.46 ± 4.01 µN m; bending modulus of 97.45 ± 18.20 MPa) and moisture management (moisture vapor transmission rate of 961.07 ± 86.16 g/m2/24 h; moisture content of 27.43 ± 2.50%; and moisture regain of 37.94 ± 4.73%). This softening process modified the thermal stability of BC. Besides, this study alleviated the drawbacks for washing (five cycles) of BC and glycerol caused by the ineffective affinity between glycerol and cellulose by adding succinic acid with catalyst and heat.

Originality/value

The study yields an effective padding process for BC softening and a unique modified BC to contribute added value to textile and leather industries as a sustainable alternative to existing materials and a premise for future research on BC functionalization by using doable technologies in mass production as padding.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 8 September 2022

Asieh Yahyazadeh, Enayatollah Moradi Rufchahi, Hessamoddin Yousefi and Seyyedeh Maryam Golzar Poursadeghi

This paper aims to synthesize 6-ethyl-4-hydroxyquinolin-2(1H)-one as a new enol-type coupling component in the preparation of some 3-arylazo-4-hydroxyquinolin-2(1H)-one dyes and…

Abstract

Purpose

This paper aims to synthesize 6-ethyl-4-hydroxyquinolin-2(1H)-one as a new enol-type coupling component in the preparation of some 3-arylazo-4-hydroxyquinolin-2(1H)-one dyes and evaluate the solvent effects on their absorption in ultraviolet-visible spectra.

Design/methodology/approach

6-Ethyl-4-hydroxyquinolin-2(1H)-one was synthesized by thermal cyclocondensation reaction of N, N′-bis(4-ethylphenyl) malonamide at 130–140°C in polyphosphoric acid. This compound was then applied in the azo-coupling reaction with some aniline-based diazonium salts, so as to prepare seven new mono-heterocyclic azo dyes. The structures of the compounds were confirmed using mass spectroscopic technique. Fourier transform infra red (FT-IR) and 1H proton nuclear magnetic resonance (1H NMR) and carbon-13 nuclear magnetic resonance (13 C NMR) studies on the structure of the azo compounds revealed that they exist as two E- and Z-isomers of hydrazone tautomer both in solid and solution state. The effects of acid and base on the visible absorption spectra of the dyes were also evaluated and discussed.

Findings

Ultra violet-visible UV-vis absorption spectra of the dyes didn’t show significant variation by changing of solvents because of intramolecular H-bonding between proposed hydrazone forms and 2- and 4-keto functions in their structures. The spectra of the dyes were not sensitive to the addition of acid but were very sensitive to base.

Originality/value

The synthesized 3-arylazo-4-hydroxyquinolin-2(1H)-one dyes are new members in the 4-hydroxyquinolin-2(1H)-one azo dyes family, where very few details regarding the synthesis of such dyes are reported before in the literature. They are unique in terms of synthesis and spectral properties.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Article
Publication date: 30 September 2022

Amirul Syafiq, Vengadaesvaran Balakrishnan and Nasrudin Abd. Rahim

This paper aims to design the nano-titanium dioxide (TiO2) coating system which has superhydrophilic property, self-cleaning mechanism and antifog property as well as strong…

Abstract

Purpose

This paper aims to design the nano-titanium dioxide (TiO2) coating system which has superhydrophilic property, self-cleaning mechanism and antifog property as well as strong adhesion on glass substrate.

Design/methodology/approach

Two hydrophilic materials have been used such as TiO2 nanoparticles as fillers and hydrophilic copolymer, Pluronic F-127 by using simple sol–gel approach. The prepared solution was applied onto glass through dip- and spray-coating techniques and then left for drying at ambient temperature.

Findings

The nano-TiO2 superhydrophilic coating has achieved the water contact angle of 4.9° ± 0.5°. The superhydrophilic coating showed great self-cleaning effect against concentrated syrup and methylene blue where thin layer of water washes the dirt contaminants away. The nano-TiO2 coating exhibits great antifog performance that maintains high transparency of around 89% when the coated glass is placed above hot-fog vapor for 10 min. The fog droplets were condensed into water film which allowed the transmission of light through the glass. The strong adhesion of coated glass shows no total failure at scratch profile when impacted with scratch load of 500, 800 and 1,200 mN.

Research limitations/implications

Findings will be useful in the development of self-cleaning superhydrophilic coating that is applicable on building glass and photovoltaic panel.

Practical implications

The developed nano-TiO2 coating is developed by the combination of hydrophilic organic copolymer–inorganic TiO2 network to achieve great superhydrophilic property, optimum self-cleaning ability and supreme antifog performance.

Social implications

The findings will be useful for residents in building glass window where the application will reduce dust accumulation and keep the glass clean for longer period.

Originality/value

The synthesis of nano-TiO2 superhydrophilic coating which can be sprayed on large glass panel and cured at ambient temperature.

Article
Publication date: 26 September 2022

Amirul Syafiq, Nasrudin Abd. Rahim, Vengadaesvaran Balakrishnan and A.K. Pandey

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium…

Abstract

Purpose

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium carbonate (nano-CaCO3) and titanium dioxide (TiO2).

Design/methodology/approach

The synthesis method of PDMS/nano-CaCO3-TiO2 is based on sol-gel process. The crosslinking between PDMS and nanoparticles is driven by the covalent bond at temperature of 50°C. The 3-Aminopropyltriethoxysilane is used as binder for nanoparticles attachment in polymer matrix. Two fabrication methods are used, which are dip- and spray-coating methods.

Findings

The prepared coated glass fulfilled the requirement of standard self-cleaning and fog-resistance performance. For the self-cleaning test BS EN 1096-5:2016, the coated glasses exhibited the dust haze value around 20%–25% at tilt angle of 10°. For the antifog test, the coated glasses showed the fog haze value were below 2% and the gloss value were above 85%. The obtained results completely achieved the standard antifog value ASTM F659-06 protocol.

Research limitations/implications

Findings will provide an infrastructure support for the building glass to enhance building’s energy efficiency, cleaning performance and friendly environment.

Practical implications

This study proposed the simple synthesis method using hydrophobic polymer and nano-CaCO3 and nano-TiO2, which can achieve optimum self-cleaning property at low tilt angle and fog-resistance performance for building glass.

Social implications

The research findings have high potential for building company, cleaning building company and government sector. The proposed project capable to reduces the energy consumption about 20% per annum due to labor cost, time-consuming and safety during manual cleaning.

Originality/value

The novel method to develop self-cleaning coating with fog-resistance using simple synthesis process and fabrication method for building glass application.

Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 January 2024

Ernest Mbamalu Ezeh, Ezeamaku U Luvia and Onukwuli O D

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has…

Abstract

Purpose

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has gained popularity in recent years due to their various advantages, including renewability, low cost, low density and biodegradability. Gourd fibre is one such natural fibre that has been identified as a potential reinforcement material for composites. However, it has low surface energy and hydrophobic nature, which makes it difficult to bond with matrix materials such as polyester. To overcome this problem, chemically adapted gourd fibre has been proposed as a solution. Chemical treatment is one of the most widely used methods to improve the properties of natural fibres. This research evaluates the feasibility and effectiveness of incorporating chemically adapted gourd fibre into polyester composites for industrial fabrication. The purpose of this study is to examine the application of chemically modified GF in the production of polyester composite engineering materials.

Design/methodology/approach

This work aims to evaluate the effectiveness of chemically adapted gourd fibre in improving the adhesion of gourd fibre with polyester resin in composite fabrication by varying the GF from 5 to 20 wt.%. The study involves the preparation of chemically treated gourd fibre through surface modification using sodium hydroxide (NaOH), permanganate (KMnO4) and acetic acid (CH3COOH) coupling agents. The mechanical properties of the modified fibre and composites were investigated. It was then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to determine the changes in surface morphology and functional groups.

Findings

FTIR characterization showed that NaOH treatment caused cellulose depolymerization and caused a significant increase in the hydroxyl and carboxyl groups, showing improved surface functional groups; KMnO4 treatment oxidized the fibre surface and caused the formation of surface oxide groups; and acetic acid treatment induced changes that primarily affected the ester and hydroxyl groups. SEM study showed that NaOH treatment changed the surface morphology of the gourd fibre, introduced voids and reduced hydrophilic tendencies. The tensile strength of the modified gourd fibres increased progressively as the concentration of the modification chemicals increased compared to the untreated fibres.

Originality/value

This work presents the designed composite with density, mechanical properties and microstructure, showing remarkable improvements in the engineering properties. An 181.5% improvement in tensile strength and a 56.63% increase in flexural strength were got over that of the unreinforced polyester. The findings from this work will contribute to the understanding of the potential of chemically adapted gourd fibre as a reinforcement material for composites and provide insights into the development of sustainable composite materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 112