Search results

1 – 10 of 11
Article
Publication date: 4 July 2023

Jianhang Xu, Peng Li and Yiren Yang

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the…

Abstract

Purpose

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the structural displacement-dependent unsteady fluid force, the steady one related to structural initial configuration and the variable structural parameters (i.e. the variable support stiffness) are considered in the modeling.

Design/methodology/approach

The steady fluid force is treated as a pipe preload, and the elastically supported pipe-fluid model is dealt with as a prestressed hydroelastic system with variable parameters. To avoid repeated numerical simulations caused by parameter variation, structural and hydrodynamic reduced-order models (ROMs) instead of conventional computational structural dynamics (CSD) and computational fluid dynamics (CFD) solvers are utilized to produce data for the update of the structural, hydrodynamic and hydroelastic state-space equations. Radial basis function neural network (RBFNN), autoregressive with exogenous input (ARX) model as well as proper orthogonal decomposition (POD) algorithm are applied to modeling these two ROMs, and a hybrid framework is proposed to incorporate them.

Findings

The proposed approach is validated by comparing its predictions with theoretical solutions. When the steady fluid force is absent, the predictions agree well with the “inextensible theory”. The pipe always loses its stability via out-of-plane divergence first, regardless of the support stiffness. However, when steady fluid force is considered, the pipe remains stable throughout as flow speed increases, consistent with the “extensible theory”. These results not only verify the accuracy of the present modeling method but also indicate that the steady fluid force, rather than the extensibility of the pipe, is the leading factor for the differences between the in- and extensible theories.

Originality/value

The steady fluid force and the variable structural parameters are considered in the data-driven modeling of a hydroelastic system. Since there are no special restrictions on structural configuration, steady flow pattern and variable structural parameters, the proposed approach has strong portability and great potential application for other hydroelastic problems.

Article
Publication date: 1 June 1992

ANTHONY D. LUCEY and PETER W. CARPENTER

A numerical method is developed which can simulate the interaction between a finite compliant panel and an unsteady potential flow. A boundary‐element technique yields the flow…

65

Abstract

A numerical method is developed which can simulate the interaction between a finite compliant panel and an unsteady potential flow. A boundary‐element technique yields the flow solution whilst finite‐differences are used to solve the wall dynamics; these are then coupled to generate a fully interactive wall/flow system. Thus, the evolution of any wall disturbance can be followed. Parallel computing is appropriately employed and a stability investigation of a realistic compliant panel is carried out. Three‐dimensional flexural waves are found below a critical flow speed whilst beyond this threshold, essentially two‐dimensional unstable divergence waves are found. The form of divergence shows good agreement with that seen in experimental studies. The versatility of this new method will permit the investigation of a wide variety of single‐ and multi‐panel configurations subject to different forms of excitation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2021

Lydia Khouf, Mustapha Benaouicha, Abdelghani Seghir and Sylvain Guillou

The paper aims to present a numerical modeling procedure for the analysis of liquid sloshing in a flexible tank subjected to an external excitation, with taking into account the…

Abstract

Purpose

The paper aims to present a numerical modeling procedure for the analysis of liquid sloshing in a flexible tank subjected to an external excitation, with taking into account the effects of fluid–structure interaction (FSI).

Design/methodology/approach

A numerical model based on coupling a two-phase flow solver and an elastic solid solver is developed in OpenFOAM code. The Arbitrary Lagrangian–Eulerian formulation is adopted for the two-phase Navier–Stokes equations in a moving domain. The volume of fluid (VOF) method is applied for the air–liquid interface tracking. The finite volume method is used for the spatial discretization of both the fluid and the structure dynamics equations. The FSI coupling problem is solved by an explicit coupling scheme. The model is validated for linear and nonlinear sloshing cases. Then, it is used to analyze the effects of the liquid sloshing on the dynamic response of the tank and the effects of the tank flexibility on the liquid sloshing.

Findings

The obtained results show that the flexibility of the tank walls amplifies the amplitude of the sloshing and increases the fluctuation period of the air–liquid interface. Furthermore, it is found that the bending moment acting on the tank walls may be underestimated when rigid walls assumption is adopted as usually done in sloshing tank modeling. Also, tank walls flexibility causes a phase shift in the free surface dynamic response.

Originality/value

A review of previous studies on liquid sloshing in flexible tanks revealed that FSI effects have not been clearly and comprehensively analyzed for large-amplitude liquid sloshing. Many physical and numerical aspects of this problem still require clarifications and enhancements. The added value of the present work and its originality lie in the investigation of large-amplitude liquid sloshing in flexible tanks by using a staggered coupling approach. This approach is carried out by an original combination of a linear solid solver with a two phase fluid solver in OpenFOAM code. In addition, FSI effects on some response quantities, identified and analyzed herein, have not been found in the previous works.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 September 2005

S.S. Motsa and P. Sibanda

A detailed investigation of the effects of surface flexibility on the inviscid instability of boundary‐layer flow over a horizontal flat plate with heat transfer when the fluid…

Abstract

Purpose

A detailed investigation of the effects of surface flexibility on the inviscid instability of boundary‐layer flow over a horizontal flat plate with heat transfer when the fluid buoyancy is large is undertaken. The aim of this study is to determine whether the inviscid disturbances that arise at this limit are stabilized or destabilized by surface compliancy.

Design/methodology/approach

For large positive buoyancy numbers, the motion of the disturbances is governed by the Taylor‐Goldstein (TG) equation. Using the Chebyshev collocation spectral method, the eigen‐solutions of the TG equation are obtained and compared with known results from boundary‐layer flow over rigid flat plates.

Findings

The numerical results show that the effects of surface compliancy are important for small wave numbers and that for the inviscid modes, increasing surface parameters has the effect of destabilizing the flow. For large compliancy parameters the flow structure is indistinguishable from that which obtains in boundary layer flow over rigid surfaces.

Research limitations/implications

The multiplicity of the compliant wall parameters makes a full parametric study that should show the effect of varying the compliance of the boundary surface on the stability of the flow mathematically intractable. In this study only a brief parametric study, for selected parameters is presented.

Originality/value

It is believed that this paper would be of immense value to applied mathematicians and engineers working in the areas of boundary layer stability and natural convection flows. In the last four decades there has been overwhelming interest shown by researchers in convective boundary‐layer flow. This has largely stemmed from the numerous applications of such flows in geophysics and engineering problems. Many of these applications, for example, polymer and food processing involve the flow of a fluid over a flexible surface. This research aims to bring the dynamics of the surface as a possible mechanism to stabilize convective boundary layer flows and prevent separation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2021

A. A. Alanazi, Sultan Z. Alamri, S. Shafie and Shazirawati Mohd Puzi

The purpose of this paper is to obtain the nonlinear Schrodinger equation (NLSE) numerical solutions in the presence of the first-order chromatic dispersion using a second-order…

Abstract

Purpose

The purpose of this paper is to obtain the nonlinear Schrodinger equation (NLSE) numerical solutions in the presence of the first-order chromatic dispersion using a second-order, unconditionally stable, implicit finite difference method. In addition, stability and accuracy are proved for the resulting scheme.

Design/methodology/approach

The conserved quantities such as mass, momentum and energy are calculated for the system governed by the NLSE. Moreover, the robustness of the scheme is confirmed by conducting various numerical tests using the Crank-Nicolson method on different cases of solitons to discuss the effects of the factor considered on solitons properties and on conserved quantities.

Findings

The Crank-Nicolson scheme has been derived to solve the NLSE for optical fibers in the presence of the wave packet drift effects. It has been founded that the numerical scheme is second-order in time and space and unconditionally stable by using von-Neumann stability analysis. The effect of the parameters considered in the study is displayed in the case of one, two and three solitons. It was noted that the reliance of NLSE numeric solutions properties on coefficients of wave packets drift, dispersions and Kerr nonlinearity play an important control not only the stable and unstable regime but also the energy, momentum conservation laws. Accordingly, by comparing our numerical results in this study with the previous work, it was recognized that the obtained results are the generalized formularization of these work. Also, it was distinguished that our new data are regarding to the new communications modes that depend on the dispersion, wave packets drift and nonlinearity coefficients.

Originality/value

The present study uses the first-order chromatic. Also, it highlights the relationship between the parameters of dispersion, nonlinearity and optical wave properties. The study further reports the effect of wave packet drift, dispersions and Kerr nonlinearity play an important control not only the stable and unstable regime but also the energy, momentum conservation laws.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 April 2019

Abdulhakim Adeoye Shittu, Fuat Kara, Ahmed Aliyu and Obinna Unaeze

The purpose of this paper is to mainly review the state-of-the-art developments in the field of hydrodynamics of offshore pipelines, identifying the key tools for analysis of…

Abstract

Purpose

The purpose of this paper is to mainly review the state-of-the-art developments in the field of hydrodynamics of offshore pipelines, identifying the key tools for analysis of pipeline free spans, their applications, their qualifying characteristics and capabilities and limitations.

Design/methodology/approach

These different analytical, numerical and semi-empirical tools available for predicting such hydrodynamic loads and their effects include VIVANA, PIPESIN, VIVSIM, SIMULATOR, FATFREE, amongst others. Inherent in these models are current effects, wave effects and/ or pipe–soil interactions.

Findings

Amongst these models, the most attention was given to the new VIVANA model because this model take into account the vortex-induced effects with respect to free-spanning pipelines (which have dominant effect in the span analysis in deep water) better than other semi-empirical models (such as Shear 7). Recent improvements in VIVANA include its ability to have arbitrary variation in speed and direction of current, as well as the ability for calculation of pure IL and combined IL-CF response. Improvements in fatigue assessments at free spans, i.e. pipe–soil interaction have been achieved through the combined frequency domain and non-linear time domain analysis methodology adopted. Semi-empirical models are still the de facto currently used in the design of free-spanning pipelines. However, there is need for further research on free-span hydrodynamic coefficients and on how in-line and cross-flow vibrations interact. Again, there is still the challenge due to VIV complexity in fully understanding the fluid structure interaction problem, as there is no consolidated procedure for its analysis. It has been observed that there is large scatter between the different codes adopted in the prediction of fatigue damage, as there lacks full-scale test data devoted to determination/validation of the coefficients used in the semi-empirical models. A case study of the preliminary design of a typical 48 in. pipeline has been presented in this study to demonstrate the use of the free-span analysis tool, DNV RP F105. Excel spreadsheet has been applied in the execution of formulas.

Originality/value

This review paper is the first of its kind to study the state-of-the-art development in pipeline free-span analysis models and demonstrate the use of analysis tool, DNV for MAFSL calculation. Hence, information obtained from this paper would be invaluable in assisting designers both in the industry and academia.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 May 2022

Massicilia Dahmani, Abdelghani Seghir, Nabil Issaadi and Ouali Amiri

This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified…

Abstract

Purpose

This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified mechanical single-degree-of-freedom system allowing to reproduce the heave movements is first developed, then the obtained lumped characteristics are used for elastic analysis of the floating body in heave motion.

Design/methodology/approach

First, a two-dimensional numerical model of a rigid floating body in a wave tank is implemented under DualSPHysics, an open source computational fluid dynamics (CFD) code based on smoothed particle hydrodynamics method. Then, the obtained results are exploited to derive an equivalent mechanical mass-spring-damper model. Finally, estimated equivalent characteristics are used in a structural finite element modeling of the considered body assuming elastic behavior.

Findings

Obtained results concerning the floating body displacements are represented and validated using existing experimental data in the literature. Wave forces acting on the body are also evaluated. It was found that for regular waves, it is possible to replace the complex CFD refined model by an equivalent simplified mechanical system which makes easy the use of structural finite element analysis.

Originality/value

The originality of this work lies in the proposed procedure to evaluate the mechanical properties of the equivalent elastic system. This allows to couple two different software tools and to take advantages of their features.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 September 1999

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers…

4353

Abstract

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers, brakes, gears, bearings, gaskets and seals are handled. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of this paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An Appendix included at the end of the paper presents a bibliography on finite element applications in the analysis/design of machine elements for 1977‐1997.

Details

Engineering Computations, vol. 16 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 October 2020

Hangduo Gao, Zhao Yin, Jun Liu, Quansheng Zang and Gao Lin

The purpose of this paper is to analyze the liquid sloshing behaviors in two-dimensional tanks with various porous baffles under the external excitation.

Abstract

Purpose

The purpose of this paper is to analyze the liquid sloshing behaviors in two-dimensional tanks with various porous baffles under the external excitation.

Design/methodology/approach

Adopting the finite element method (FEM) and control variable method to study the impacts of the height, length, number, location, shape, porous-effect parameter of the porous baffle, the external load frequency and the shape of the tank on the liquid sloshing response.

Findings

The amplitude of the free surface can be reduced effectively when the baffle opening is appropriate. The anti-sway ability of the system increases in pace with the baffle’s height growing. Under the same conditions, the shapes of the baffles have an important effect on improving the anti-sway ability of the system.

Originality/value

As there exist the differences of the velocity potential between each side of the porous baffle, which means that there are two different velocity potentials at a point on the porous baffle, the conventional finite element modeling technologies are not suitable to be applied here. To deal with this problem, the points on the porous baffle are regarded as two nodes with the same coordinate to model and calculate.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 June 2019

Niaz B. Khan, Zainah B. Ibrahim, Mian Ashfaq Ali, Mohammed Jameel, Muhammad Ijaz Khan, Ahad Javanmardi and D.O. Oyejobi

Over the past few decades, the flow around circular cylinders has been one of the highly researched topics in the field of offshore engineering and fluid-structure interaction…

Abstract

Purpose

Over the past few decades, the flow around circular cylinders has been one of the highly researched topics in the field of offshore engineering and fluid-structure interaction (FSI). In the current study, numerical simulations for flow around a fixed circular cylinder are performed at Reynolds number (Re) = 3900 with the LES method using the ICEM-CFD and ANSYS Fluent tool for meshing and analysis, respectively. Previously, similar studies have been conducted at the same Reynolds number, but there have been discrepancies in the results, particularly in calculating the recirculation length and angle of separation. In addition, the purpose of this study is to address the impact of time interval averaging to obtain the fully converged solution.

Design/methodology/approach

This study presents the LES method, using the ICEM-CFD and ANSYS fluent tool for meshing and analysis.

Findings

In the current study, turbulence statistics are sampled for 25, 50, 75 and 100 vortex-shedding cycles with the CFL value O (1). The recirculation length, angle of separation, hydrodynamic coefficients and the wake behind the cylinder are investigated up to ten diameters. The drag coefficient and Strouhal number are observed to be less sensitive, whereas the recirculation length appeared to be highly dependent on the average time statistics and the non-dimensional time step. Similarly, the mean streamwise and cross-flow velocity are observed to be sensitive to the average time statistics and non-dimensional time step in the wake region near the cylinder.

Originality/value

In the current investigation, turbulence statistics are sampled for 25, 50, 75 and 100 vortex-shedding cycles with the CFL value O (1), using large eddy simulation method at Re = 3900 around a circular cylinder. The impact of time interval averaging to obtain the fully converged mean flow field is addressed. No such consideration is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 11