Search results

1 – 10 of over 1000
Article
Publication date: 1 May 2006

Y. Zhang

To develop a more realistic model for molecularly thin film hydrodynamic lubrication by incorporating the fluid inhomogeneity and discontinuity effects across the fluid film…

Abstract

Purpose

To develop a more realistic model for molecularly thin film hydrodynamic lubrication by incorporating the fluid inhomogeneity and discontinuity effects across the fluid film thickness in this lubrication.

Design/methodology/approach

The total mass flow of the fluid through the contact in a basic one‐dimensional molecularly thin film hydrodynamic lubrication is studied by incorporating the fluid inhomogeneity and discontinuity effects across the fluid film thickness, based on a simplified momentum transfer model between neighboring fluid molecules across the fluid film thickness. This flow is calculated according to the present approach and the theory of viscous flow between two contact surfaces. The total mass flow of the fluid through the contact in this lubrication is also calculated from conventional hydrodynamic lubrication theory, which was based on continuum fluid assumption in the whole lubricated contact. The ratio of this flow calculated from the present approach to that calculated from conventional hydrodynamic lubrication theory is here defined as the flow factor for a one‐dimensional molecularly thin film hydrodynamic lubrication due to the fluid inhomogeneity and discontinuity effects. Results of this flow factor are presented for wide operational parameters.

Findings

In the molecularly thin film hydrodynamic lubrication, when the fluid inhomogeneity and discontinuity across the fluid film thickness both are incorporated, the total fluid mass flow through the contact and thus the global fluid film thickness are increased. The combined effect of the fluid inhomogeneity and discontinuity across the fluid film thickness on the total fluid mass flow through the contact in this lubrication is determined by the operational parameter K=((∂p/∂xh2)/[6ηbulk(1−ξ)(ua+ub)]); when the operational parameter K is high, this effect is significant; when the operational parameter K is low, this effect is negligible. On the other hand, in this lubrication, when the combined effect of the fluid inhomogeneity and discontinuity across the fluid film thickness is incorporated, the shear stresses at the contact‐fluid interfaces are reduced and this reduction can be significant. This reduction may strongly depend on the value of the dimensionless discontinuity parameter Δ/D of the fluid across the fluid film thickness but weakly depend on the number n of the fluid molecules across the fluid film thickness.

Practical implications

An important and very useful research for the academic researcher and the engineer who are, respectively, engaged in the study and design of hydrodynamic lubrication on mechanical components especially of very low hydrodynamic lubrication film thickness. It is also important to the subsequent research of molecularly thin film hydrodynamic lubrication.

Originality/value

A new model of molecularly thin film hydrodynamic lubrication in one‐dimensional contacts is originally proposed and described by incorporating the fluid inhomogeneity and discontinuity effects across the fluid film thickness in this lubrication. This new model of molecularly thin film hydrodynamic lubrication is of importance to the theoretical study of molecularly thin film hydrodynamic lubrication.

Details

Industrial Lubrication and Tribology, vol. 58 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2007

Emel Ceyhun Sabir and Erdem Koç

The main purpose of the study is to develop a theoretical model being capable of analysing the sealing and hydrodynamic‐hydrostatic lubrication mechanisms occuring between the…

Abstract

Purpose

The main purpose of the study is to develop a theoretical model being capable of analysing the sealing and hydrodynamic‐hydrostatic lubrication mechanisms occuring between the mating surfaces of mechanical face seals.

Design/methodology/approach

The theoretical model developed is based on solving the governing basic lubrication equation (Reynolds differential equation) by employing a finite difference method. The main lubrication machanism is assumed to be converging‐diverging wedge which is formed by the relative tilt of the sealing surfaces. The non‐dimensional Reynolds equation was solved to give the pressure distribution and consequently the load and moment acting on the movable seal ring. The aim of the model is to predict the non‐dimensional hydrodynamic and hydrostatic load carrying capacity of the system.

Findings

Theoretical model developed is capable of estimating the hydrodynamic and hydrostatic behaviour of mechanical radial face seals. It is shown that a converging‐diverging wedge mechanism produces hydrodynamic pressure which in turn maintains the seperation of the surfaces. The tilt appears to be caused mainly by bearing misalignment. It has been shown that hydrostatic load or pressure centre is an important parameter for load balance of moving seal ring. It is easy and useful to calculate the dimensional parameters defined taking into account the different geometrical and operating parameters.

Originality/value

This paper offers a quick and easy opportunity to examine the hydrodynamic behaviour of movable seal ring of a mechanical face seal and provides a considerable contribution to the lubrication and sealing research area. With the general theoretical model developed, the behaviour of the seal ring can be modelled and estimated.

Details

Industrial Lubrication and Tribology, vol. 59 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 2006

Y. Zhang

To review, analyze and present the effects of the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage and the critical importance of these effects in…

2043

Abstract

Purpose

To review, analyze and present the effects of the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage and the critical importance of these effects in elastohydrodynamic lubrication (EHL).

Design/methodology/approach

The experimental and theoretical research results of the contact‐fluid interfacial shear strength and its caused contact‐fluid interfacial slippage in hydrodynamic lubrication and especially in EHL obtained in the past decades and progressed in recent years by the present author and by others are reviewed. Analysis and presentation are made on both the contact‐fluid interfacial shear strength versus fluid pressure curve for a given bulk fluid temperature in an isothermal EHL and the influence of the bulk fluid temperature on this curve.

Findings

It is very clearly and well understood from the present paper that the value of the contact‐fluid interfacial shear strength in the inlet zone in an EHL contact, i.e. at low EHL fluid film pressures is usually low and usually has rather a weak dependence on the EHL fluid film pressure. This proves the correctness of the EHL theories previously developed by the author based on the assumption of this low value and dependence on the EHL fluid film pressure of the contact‐fluid interfacial shear strength. It is also very clearly understood that the bulk fluid temperature usually has a strong influence on the value of the contact‐fluid interfacial shear strength in EHL and the increase of this temperature usually significantly reduces the value of the contact‐fluid interfacial shear strength in EHL.

Practical implications

A very useful material for the engineers who are engaged in the design of EHL on gears, cams and roller bearings, and for the tribology scientists who thrust efforts in studying EHL and mixed EHL both by theoretical modeling and by experiments.

Originality/value

A new and generalized mode of mixed EHL is originally proposed by incorporating the finding of a more realistic mode of the contact regimes in a practical mixed EHL based on the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage effects. This mode of mixed EHL should become the direction of the theoretical research of mixed EHL in the future.

Details

Industrial Lubrication and Tribology, vol. 58 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 July 2023

Chunxing Gu, Li Dai, Di Zhang and Shuwen Wang

This paper aims to study the startup performance of thrust bearing. The effects of acceleration scenarios, roughness, the area ratio of texture and texture depth on the transient…

Abstract

Purpose

This paper aims to study the startup performance of thrust bearing. The effects of acceleration scenarios, roughness, the area ratio of texture and texture depth on the transient startup performance of the thrust bearing were analyzed.

Design/methodology/approach

The lubrication model is solved by the Reynolds equation with the mass-conservation boundary condition. The Greenwood and Tripp contact model is used to predict asperity contact load. The finite volume method is used to discretize the governing equations.

Findings

By studying the bearing performance with different acceleration functions, it was found that the higher the acceleration at the beginning of the startup, the faster the thrust bearing operates under the hydrodynamic lubrication regime in the start stage. It appears that the friction and contact time of asperity increase with the increasing roughness. The optimal area ratio of texture is within 30%–50%. The depth of texture ranging from 1 to 2 is the best.

Originality/value

This paper proposes a transient mixed lubrication analysis model of the thrust bearing. This model can be used to analyze the variations of tribological performance and lubrication regime of the thrust bearing under different acceleration scenarios.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2022-0268/

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2014

Jinghu Ji, Yonghong Fu and Qinsheng Bi

– The purpose of this paper is to investigate a partially textured slider of infinite width with orientation ellipse dimples in liquid application.

Abstract

Purpose

The purpose of this paper is to investigate a partially textured slider of infinite width with orientation ellipse dimples in liquid application.

Design/methodology/approach

In this paper, the pressure distribution of lubrication between a partially textured slider and a smooth sliding slider is calculated by the multi-grid method. For the same dimple area, the influence of the ellipse dimple with geometric parameters, and distribution and orientation on the hydrodynamic lubrication is evaluated in terms of the dimensionless average pressure for a given set of operating parameters.

Findings

In the present work, the magnitude of the dimensionless average pressure seems proportional to the slender ratio. Consequently, the slender ratio may be chosen as large as possible based on fabrication techniques. The longer axes of ellipse dimples placed parallel to the direction of sliding always show the better hydrodynamic effect. Furthermore, the results show that the ellipse dimples can greatly improve hydrodynamic effect of partially surface textured slider of infinite width by proper design of these texturing parameters.

Originality/value

This paper develops a partial surface texturing infinitely width slider with orientation ellipse dimples for improving hydrodynamic lubrication.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 1956

Verein Deutscher Ingenieurs

Prof Dr. Ing. W. Peppler, in opening the Conference, suggested that insufficient attention was being paid to research on Lubrication and Wear in Germany at the present time…

Abstract

Prof Dr. Ing. W. Peppler, in opening the Conference, suggested that insufficient attention was being paid to research on Lubrication and Wear in Germany at the present time. Whilst the work of Sommerfeld as early as 1904 and the existence of the Max Planck Gesellschaft, Department of Hydrodynamic Lubrication, in Göttingen was indicative of the German effort in the region of hydrodynamic lubrication it appeared from comparison of literature published in different countries during the past decade that Germany was falling behind England and U.S.A. in the study of boundary and mixed lubrication.

Details

Industrial Lubrication and Tribology, vol. 8 no. 6
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 27 December 2022

Md Modassir Hussain, Vivek Gaval, Amit Pratap and Sanjay Rukhande

This study aims to study the tribological performance of sunflower TMP ester and silica nanoparticles additives as a biolubricant alternative to the conventional lubricants for…

Abstract

Purpose

This study aims to study the tribological performance of sunflower TMP ester and silica nanoparticles additives as a biolubricant alternative to the conventional lubricants for hydrodynamic journal bearing applications.

Design/methodology/approach

Nanolubricants were synthesized using an ultrasonicator and a homogenizer. A pin-on-disk tribometer was used to simulate the boundary lubrication condition for hydrodynamic journal bearing application in the presence of the studied lubricants. Surface analysis of the pin (bearing material) was done using scanning electron microscopy and energy dispersive X-ray spectroscopy.

Findings

The sunflower TMP ester performed well in terms of the coefficient of friction compared to commercial lubricants, but its wear performance was poor. The silica nanoparticles improved the wear and friction performance of the sunflower TMP ester. With the addition of 1% silica nanoparticles to sunflower TMP ester, the reduction in the coefficient of friction was 27.92% and the reduction in specific wear rate was 54.79%, making it the best lubricant out of all studied lubricants.

Originality/value

Although there are various available studies on vegetable oil-based lubricants for hydrodynamic journal bearing applications, the studies on the use of vegetable oil-based TMP esters for hydrodynamic journal bearing applications are limited. Also, the effect of silica nanoparticles on the tribological performance of TMP esters under boundary lubrication condition has not been studied extensively in the available literature.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Xingxin Liang, Zhenglin Liu, Huanjie Wang, Xuhui Zhou and Xincong Zhou

The purpose of this study is to investigate the effects of partial texture location and dimple depth on load carrying capacity (LCC), friction coefficient and circumferential flow…

Abstract

Purpose

The purpose of this study is to investigate the effects of partial texture location and dimple depth on load carrying capacity (LCC), friction coefficient and circumferential flow of journal bearing.

Design/methodology/approach

Based on the Navier-Stokes equation, the methodology used computational fluid dynamics (CFD). A phase change boundary condition was applied on fluid domain, and the negative pressure at divergent region of oil film was considered.

Findings

It has been found that texture located at lubricant inlet area can improve the performance of the bearing, and the effect of shallow dimples is superior to the deep ones. However, the bearing performance will be reduced due to the texture located at the maximum pressure area. When texture is located at the lubricant outlet area, there will be two different situations: the part of the texture located within the oil film divergent area can improve the LCC, while the part that is beyond the divergent region will make the LCC decrease.

Originality/value

The lower-half oil film model was established only in this study to analyze the hydrodynamic lubrication performance of partial textured journal bearing, and the lower-half oil film was divided into three parts. A new cavitation algorithm was introduced to deal with the negative pressure. The formula for calculating the friction of liquid film is refined, including the consideration of vapor phase. The simulation results show that the location of partial texture have a great influence on the bearing performance.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2018

Leonid Burstein

This paper aims to assess the behavior of hydrodynamic lubrication between surfaces with pores of different sizes. The profiles of the opposite surfaces are treated by lines with…

Abstract

Purpose

This paper aims to assess the behavior of hydrodynamic lubrication between surfaces with pores of different sizes. The profiles of the opposite surfaces are treated by lines with different number of pores that allow clarification of each of the surfaces influence on the lubricating film behavior.

Design/methodology/approach

A transient, spatially one-dimensional model of surfaces with surface-unequal pore numbers and sizes has been applied in the context of liquid lubrication. Special program for parametric study has been developed.

Findings

The calculations show that lubricating film between two surfaces with unequal pores provides better load support in comparison to the surfaces with equal pores. It is also shown that interaction between the pores of the opposite surfaces should be taken into consideration for defining better qualitative behavior of lubricating film.

Practical implications

The results of parametric calculations together with surface model can be used to design optimum lubrication quality of the rubbing surfaces.

Originality/value

The hydrodynamic behavior of a lubricating film between surfaces with different number of pore and their dimensions has been theoretically studied for the first time.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 August 2022

Juan Guo, Yanfeng Han, Shouan Chen, Jianlin Cai and Haiming Dai

This paper aims to identify the role of the wall slip on the dynamic characteristics of the multi-groove water-lubricated bearing considering rough contact, including stiffness…

Abstract

Purpose

This paper aims to identify the role of the wall slip on the dynamic characteristics of the multi-groove water-lubricated bearing considering rough contact, including stiffness and damping coefficients of the water film and contact stiffness coefficient of the asperity contact.

Design/methodology/approach

The modified perturbed average Reynolds equations with the wall slip are derived, and the calculated perturbed hydrodynamic pressures are integrated to obtain the stiffness and damping coefficients of the water film. The elastic-plastic contact model of Kogut and Etsion is used to determine the contact stiffness coefficient.

Findings

Numerical results reveal that the wall slip has the more significant impact on the water film stiffness coefficients compared with the damping and contact stiffness coefficients. When the slip angle lies in a reasonable range, the lubrication performance can be effectively improved, especially in the mixed lubrication condition. In addition, it is worth emphasizing that the abrupt change of the water film stiffness coefficients occurs at the region II (pressure zone) in this study.

Originality/value

The influence mechanism of the wall slip on the dynamic characteristics of the water-lubricated bearing considering rough contact is first revealed.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000