Search results

1 – 10 of 439
Open Access
Article
Publication date: 4 May 2020

José Pedro Soares Pinto Leite and Mark Voskuijl

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid

8001

Abstract

Purpose

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management.

Design/methodology/approach

To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory.

Findings

The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found.

Originality/value

The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 22 March 2022

Mayank Jaiswal and Lee Zane

Sustainability is increasingly becoming an essential aspect of technological innovations. In addition, the diffusion of sustainable new technology-based products appears to be…

1262

Abstract

Purpose

Sustainability is increasingly becoming an essential aspect of technological innovations. In addition, the diffusion of sustainable new technology-based products appears to be uneven across the globe. The authors examine the effect of three country-level Hofstede measures of culture and two national-level innovation characteristics on the diffusion of Sustainable New Technology-based Products (SNTP).

Design/methodology/approach

Regression and Necessary Conditions Analysis were used to analyze a panel dataset of electric and hybrid vehicles sales from 2008 to 2017 across 89 countries.

Findings

Results suggest Long-Term Orientation (LTO) was correlated with SNTP diffusion, Indulgence (IVR) was partially correlated with SNTP diffusion and was also a necessary condition. Surprisingly, Uncertainty Avoidance (UAI) was not correlated with SNTP diffusion. In addition, a national proclivity for developing innovations and a history of utilizing prior generic innovations were both correlated and necessary for SNTP diffusion.

Originality/value

This paper measures the impact of several macro-level variables (culture and other innovation related characteristics of countries) on SNTP diffusion. In addition to regression analyses to measure the average effect size, the authors conduct Necessary Conditions Analysis, which assesses the necessity of a variable for the outcome. These insights may help multinational companies better strategize entry decisions for international markets and aid governments in formulating more effective policies by recognizing and accommodating the influences of national culture and innovation attitudes.

Details

New England Journal of Entrepreneurship, vol. 25 no. 1
Type: Research Article
ISSN: 2574-8904

Keywords

Open Access
Article
Publication date: 18 November 2021

Chaoru Lu and Chenhui Liu

This paper aims to present a cooperative adaptive cruise control, called stable smart driving model (SSDM), for connected and autonomous vehicles (CAVs) in mixed traffic streams…

901

Abstract

Purpose

This paper aims to present a cooperative adaptive cruise control, called stable smart driving model (SSDM), for connected and autonomous vehicles (CAVs) in mixed traffic streams with human-driven vehicles.

Design/methodology/approach

Considering the linear stability, SSDM is able to provide smooth deceleration and acceleration in the vehicle platoons with or without cut-in. Besides, the calibrated Virginia tech microscopic energy and emission model is applied in this study to investigate the impact of CAVs on the fuel consumption of the vehicle platoon and traffic flows. Under the cut-in condition, the SSDM outperforms ecological SDM and SDM in terms of stability considering different desired time headways. Moreover, single-lane vehicle dynamics are simulated for human-driven vehicles and CAVs.

Findings

The result shows that CAVs can reduce platoon-level fuel consumption. SSDM can save the platoon-level fuel consumption up to 15%, outperforming other existing control strategies. Considering the single-lane highway with merging, the higher market penetration of SSDM-equipped CAVs leads to less fuel consumption.

Originality/value

The proposed rule-based control method considered linear stability to generate smoother deceleration and acceleration curves. The research results can help to develop environmental-friendly control strategies and lay the foundation for the new methods.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 1 June 2022

Kamil Abdullah and Abdullahi Mohammed Usman

The purpose of the study is to consolidate a set of indicators for assessing design and construction phase strategies for reducing operational greenhouse gas (GHG) emission. They…

1029

Abstract

Purpose

The purpose of the study is to consolidate a set of indicators for assessing design and construction phase strategies for reducing operational greenhouse gas (GHG) emission. They will also estimate the quantity of operational GHG emission and its associated reduction over assessment period.

Design/methodology/approach

Five steps framework adopted include defining the purpose of the indicators and selection of candidate indicators. Others are defining the criteria for indicator selection, selecting and defining the proposed indicators. Relevancy, measurability, prevalence, preference, feasibility and adaptability of the indicator were the criteria used for selecting the indicators.

Findings

The study consolidated public transport accessibility, sustainable parking space, green vehicle priority, proximity to amenities and alternative modes as indicators for design and construction phase strategies. Transportation accounting and carbon footprint (CFP) and their associated reduction are indicators for operational GHG emission while plan and policy is an indicator for policymakers and stakeholders.

Practical implications

The study shows that providing correct indicators for assessing direct and indirect GHG emission with easy to obtain data is essential for assessment of built environment. Stakeholder can use the indicators in developing new rating systems and researchers as an additional knowledge. Policy makers and stakeholders can use the study in monitoring and rewarding the sustainability and activities of building related industries and organisations.

Originality/value

The study was conducted at the Center for Energy and Industrial Environmental Studies (CEIES) Universiti Tun Hussein Onn Malaysia and utilises existing rating systems and tools, Intergovernmental Panel on Climate Change (IPCC) and GHG protocol reports and guides and several other standards, which are open for research.

Details

Frontiers in Engineering and Built Environment, vol. 2 no. 3
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 10 June 2021

Jaeyoung Cha, Juyeol Yun and Ho-Yon Hwang

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with…

1915

Abstract

Purpose

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with different types of engines.

Design/methodology/approach

The vehicle configuration was devised considering the dimensions and operational restrictions of the roads, runways and parking lots in South Korea. A folding wing design was adopted for road operations and parking. The propulsion designs considered herein use gasoline, diesel and hybrid architectures for longer-range missions. The sizing point of the roadable PAV that minimizes the wing area was selected, and the rate of climb, ground roll distance, cruise speed and service ceiling requirements were met. For various engine types and mission profiles, the performances of differently sized PAVs were compared with respect to the MTOW, wing area, wing span, thrust-to-weight ratio, wing loading, power-to-weight ratio, brake horsepower and fuel efficiency.

Findings

Unlike automobiles, the weight penalty of the hybrid system because of the additional electrical components reduced the fuel efficiency considerably. When the four engine types were compared, matching the total engine system weight, the internal combustion (IC) engine PAVs had better fuel efficiency rates than the hybrid powered PAVs. Finally, a gasoline-powered PAV configuration was selected as the final design because it had the lowest MTOW, despite its slightly worse fuel efficiency compared to that of the diesel-powered engine.

Research limitations/implications

Although an electric aircraft powered only by batteries most capitalizes on the operating cost, noise and emissions benefits of electric propulsion, it also is most hampered by range limitations. Air traffic integration or any safety, and noise issues were not accounted in this study.

Practical implications

Aircraft sizing is a critical aspect of a system-level study because it is a prerequisite for most design and analysis activities, including those related to the internal layout as well as cost and system effectiveness analyses. The results of this study can be implemented to design a PAV.

Social implications

This study can contribute to the establishment of innovative PAV concepts that can alleviate today’s transportation problems.

Originality/value

This study compared the sizing results of PAVs with hybrid engines with those having IC engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 4 March 2020

Marco Fioriti, Silvio Vaschetto, Sabrina Corpino and Giovanna Premoli

This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design…

1796

Abstract

Purpose

This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design of the enabling technologies needed for a hybrid/electric medium altitude long endurance (MALE) unmanned aerial vehicle (UAV) to perform persistent intelligence surveillance reconnaissance (ISR) military operations.

Design/methodology/approach

Different architectures of hybrid-propulsion system are analyzed pointing out their operating modes to select the more suitable architecture for the reference aircraft. The selected architecture is further analyzed together with its electric power plant branch focusing on electric system architecture and the selected electric machine. A final comparison between the hybrid and standard propulsion is given at aircraft level.

Findings

The use of hybrid propulsion may lead to a reduction of the total aircraft mass and an increase in safety level. However, this result comes together with a reduced performance in climb phase.

Practical implications

This study can be used as a reference for similar studies and it provides a detailed description of propulsion operating modes, power management, electric system and machine architecture.

Originality/value

This study presents a novel application of hybrid propulsion focusing on a three tons class MALE UAV for ISR missions. It provides new operating modes of the propulsion system and a detailed electric architecture of its powertrain branch and machine. Some considerations on noise emissions and infra-red traceability of this propulsion, at aircraft level.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 21 June 2023

Alvin Holliman and Kimberly Collins

Companies affected by California’s cap-and-trade legislation are allotted certain credits for production that can be used or sold and can purchase additional credits from the…

1321

Abstract

Purpose

Companies affected by California’s cap-and-trade legislation are allotted certain credits for production that can be used or sold and can purchase additional credits from the state, which become a revenue source to be used for activities that reduce carbon emissions. The purpose of this paper is to investigate who ultimately pays for this program, its effectiveness in reducing carbon emissions in accordance with established goals, and the related effectiveness to advance social, economic, and environmental equity.

Design/methodology/approach

The methodology used for this research is secondary data analysis, triangulating three sources: California’s Climate Change Investment Reports, 2019-2021; repositories maintained by the California High-Speed Rail Authority and the California Air Resources Board; and a review of the literature and websites from other professional sources which addressed, directly and indirectly, the topics and questions explored in the study.

Findings

Key findings include evidence of enhancing social and environmental equity but ineffectiveness in reducing carbon emissions in accordance with state goals. Furthermore, the program displays evidence of economic inequity as it demonstrates characteristics of regressive taxation and an inability of low-income persons to acquire electric vehicles due to high costs.

Originality/value

The research effort is unique in that no other academic efforts were located which attempt to examine the cap-and-trade program’s effectiveness in attaining its goals.

Details

Public Administration and Policy, vol. 26 no. 2
Type: Research Article
ISSN: 1727-2645

Keywords

Open Access
Article
Publication date: 11 April 2022

Jie Zhu, Said Easa and Kun Gao

On-ramp merging areas are typical bottlenecks in the freeway network since merging on-ramp vehicles may cause intensive disturbances on the mainline traffic flow and lead to…

2255

Abstract

Purpose

On-ramp merging areas are typical bottlenecks in the freeway network since merging on-ramp vehicles may cause intensive disturbances on the mainline traffic flow and lead to various negative impacts on traffic efficiency and safety. The connected and autonomous vehicles (CAVs), with their capabilities of real-time communication and precise motion control, hold a great potential to facilitate ramp merging operation through enhanced coordination strategies. This paper aims to present a comprehensive review of the existing ramp merging strategies leveraging CAVs, focusing on the latest trends and developments in the research field.

Design/methodology/approach

The review comprehensively covers 44 papers recently published in leading transportation journals. Based on the application context, control strategies are categorized into three categories: merging into sing-lane freeways with total CAVs, merging into sing-lane freeways with mixed traffic flows and merging into multilane freeways.

Findings

Relevant literature is reviewed regarding the required technologies, control decision level, applied methods and impacts on traffic performance. More importantly, the authors identify the existing research gaps and provide insightful discussions on the potential and promising directions for future research based on the review, which facilitates further advancement in this research topic.

Originality/value

Many strategies based on the communication and automation capabilities of CAVs have been developed over the past decades, devoted to facilitating the merging/lane-changing maneuvers at freeway on-ramps. Despite the significant progress made, an up-to-date review covering these latest developments is missing to the authors’ best knowledge. This paper conducts a thorough review of the cooperation/coordination strategies that facilitate freeway on-ramp merging using CAVs, focusing on the latest developments in this field. Based on the review, the authors identify the existing research gaps in CAV ramp merging and discuss the potential and promising future research directions to address the gaps.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 31 August 2022

Hannes Lindkvist, Frida Lind and Lisa Melander

This paper aims to investigate actor roles and public–private interactions in networks. Role dynamics are explored in two settings: the current development network and the future…

Abstract

Purpose

This paper aims to investigate actor roles and public–private interactions in networks. Role dynamics are explored in two settings: the current development network and the future implementation network to which actors are transitioning.

Design/methodology/approach

The paper builds on the industrial marketing and purchasing approach to business markets and uses a qualitative methodology. A case study of a network developing geofencing applications in the context of sustainable transport was used. The main source of data was interviews with 26 respondents from public and private organizations.

Findings

Roles in development and implementation of geofencing are identified, where private and public actors may take on one or several roles in the developing setting. When transitioning to the implementation setting, the expectations of public actors vary and there is ambiguity over their roles, which range from active to inactive. This detailed empirical case study shows the complexity of multi-actor involvement when developing digital technology for the transport system.

Research limitations/implications

The study highlights the transition from firm-centric innovation to network-centric innovation and its implications on actor roles.

Practical implications

Organizations participating in public–private innovation networks need to be aware of the multiple roles public organizations play and the complexities they face.

Originality/value

The paper explores role dynamics within and between the development and implementation settings of geofencing. Within the current development setting, roles are identified at different organizational levels with limited change in role dynamics. When transitioning to a new setting, actors’ role dynamics may range from “limited” to “path-breaking.” In future settings, actors enter and exit networks and their roles may change dramatically.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 6
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 3 December 2020

Yaxing Ren, Saqib Jamshed Rind and Lin Jiang

A standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause…

1948

Abstract

Purpose

A standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause the voltage unbalance condition and additional power loss that reduces the cycle life of battery. This paper proposes an energy management strategy for the battery/supercapacitor (SC) hybrid energy storage system (HESS) to improve the transient performance of bus voltage under unbalanced load condition in a standalone AC microgrid (MG).

Design/methodology/approach

The SC has high power density and much more cycling times than battery and thus to be controlled to absorb the transient and unbalanced active power as well as the reactive power under unbalanced condition. Under the proposed energy management design, the battery only needs to generate balanced power to balance the steady state power demand. The energy management strategy for battery/SC HESS in a standalone AC MG is validated in simulation study using PSCAD/EMTDC.

Findings

The results show that the energy management strategy of HESS maintains the bus voltage and eliminates the unbalance condition under single-phase load. In addition, with the SC to absorb the reactive power and unbalanced active power, the unnecessary power loss in battery is reduced with shown less accumulate depth of discharge and higher average efficiency.

Originality/value

With this technology, the service life of the HESS can be extended and the total cost can be reduced.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 439