Search results

1 – 10 of over 1000
Article
Publication date: 28 March 2023

Martin Gutmann, Erik Jentges and Douglas MacKevett

The purpose of this paper is to describe an innovative approach to overcoming a common dilemma in designing negotiation simulations – that of situating a simulation in a real-life…

Abstract

Purpose

The purpose of this paper is to describe an innovative approach to overcoming a common dilemma in designing negotiation simulations – that of situating a simulation in a real-life or fictitious context. This binary choice, which the authors call the negotiation designer’s dilemma, has profound implications for the types of learning activities and outcomes that can be integrated into the overall learning experience. As a way of overcoming the trade-offs inherent in this dilemma, the authors developed what they term hybrid simulations, which blend elements of fact and fiction in its contextual design in a particular way.

Design/methodology/approach

The authors were part of a negotiation simulation design team that used Design Thinking to understand the negotiation designer’s dilemma and to prototype and test a corresponding solution.

Findings

This paper demonstrates the benefits, potential applications and the how-to of hybrid simulations within the context of two such simulations the authors have designed at two different Swiss business schools. This paper concludes by discussing the potential and limitations for the application of hybrid simulations, as well as areas of potential further development.

Originality/value

The concept of a hybrid negotiation is a novel design trick that can be used in a variety of negotiation simulation contexts.

Details

European Journal of Training and Development, vol. 48 no. 3/4
Type: Research Article
ISSN: 2046-9012

Keywords

Article
Publication date: 11 March 2024

Hendrik Hensel and Markus Clemens

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air…

Abstract

Purpose

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air. However, under high voltage direct current conditions, charge accumulation and electric field stress may occur, which may lead to partial discharge or system failure. Therefore, numerical simulations are used to design the system and determine the electric field and charge distribution. Although the gas conduction shows a more complex current–voltage characteristic compared to solid insulation, the electric conductivity of the SF6 gas is set as constant in most works. The purpose of this study is to investigate different approaches to address the conduction in the gas properly for numerical simulations.

Design/methodology/approach

In this work, two approaches are investigated to address the conduction in the insulating gas and are compared to each other. One method is an ion-drift-diffusion model, where the conduction in the gas is described by the ion motion in the SF6 gas. However, this method is computationally expensive. Alternatively, a less complex approach is an electro-thermal model with the application of an electric conductivity model for the SF6 gas. Measurements show that the electric conductivity in the SF6 gas has a nonlinear dependency on temperature, electric field and gas pressure. From these measurements, an electric conductivity model was developed. Both methods are compared by simulation results, where different parameters and conditions are considered, to investigate the potential of the electric conductivity model as a computationally less expensive alternative.

Findings

The simulation results of both simulation approaches show similar results, proving the electric conductivity for the SF6 gas as a valid alternative. Using the electro-thermal model approach with the application of the electric conductivity model enables a solution time up to six times faster compared to the ion-drift-diffusion model. The application of the model allows to examine the influence of different parameters such as temperature and gas pressure on the electric field distribution in the GIL, whereas the ion-drift-diffusion model enables to investigate the distribution of homo- and heteropolar charges in the insulation gas.

Originality/value

This work presents numerical simulation models for high voltage direct current GIL, where the conduction in the SF6 gas is described more precisely compared to a definition of a constant electric conductivity value for the insulation gas. The electric conductivity model for the SF6 gas allows for consideration of the current–voltage characteristics of the gas, is computationally less expensive compared to an ion-drift diffusion model and needs considerably less solution time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2023

Annie Msosa, Masauko Msiska, Patrick Mapulanga, Jim Mtambo and Gertrude Mwalabu

The purpose of this systematic review was to explore the benefits and challenges in the implementation of simulation-based education (SBE) in the classroom and clinical settings…

Abstract

Purpose

The purpose of this systematic review was to explore the benefits and challenges in the implementation of simulation-based education (SBE) in the classroom and clinical settings in sub-Saharan Africa. The objectives of this systematic review were to identify the benefits of utilising SBE in the classroom and clinical practice in sub-Saharan Africa and to assess the challenges in the implementation of SBE in the classroom and clinical practice in sub-Saharan Africa.

Design/methodology/approach

Five databases were searched for existing English literature (Medline, CINAHL and Science Direct), including grey literature on the subject. Out of 26 eligible studies conducted in sub-Saharan Africa between 2014 and 2021, six studies that used mixed-methods design were included. Hawker et al.’s framework was used to assess the quality of the studies. Quantitative data were presented using descriptive and inferential statistics in the form of means and standard deviations while qualitative data were analysed and presented thematically.

Findings

Quantitative findings showed that participants rated SBE highly in terms of teaching (93.2%), learning (91.4%) and skill acquisition (88.6%). SBE improved the clinical skill competency from 30% at baseline to 75% at the end. On the other hand, qualitative findings yielded themes namely: improved confidence and competence; knowledge acquisition and critical thinking; motivation and supervision; independent, self-paced learning; simulation equipment and work schedules; and planning and delivery of simulation activity. Pedagogical skills, competence and confidence are some of the elements that determine the feasibility of implementing SBE in the classroom and clinical settings.

Practical implications

SBE could help to bridge the gap between theory and practice and improve the quality of care provided by nurses. Simulation-based training is effective in improving the clinical skills of midwives and increasing their confidence in providing care. However, SBE trainees require motivation and close supervision in classroom settings if simulation is to be successfully implemented in sub-Saharan Africa. Furthermore, careful planning of scenarios, students briefing and reading of content prior to implementation facilitate effective simulation.

Originality/value

While there may be a lack of literature on the use of SBE for training nurses and midwives in the developing world, there is growing evidence that it can be an effective way to improve clinical skills and quality of care. However, there are also significant challenges to implementing simulation-based training in resource-limited settings, and more research is needed to understand how best to address these challenges. This study fills this gap in the literature.

Details

Higher Education, Skills and Work-Based Learning, vol. 13 no. 6
Type: Research Article
ISSN: 2042-3896

Keywords

Article
Publication date: 19 May 2023

Michail Katsigiannis, Minas Pantelidakis and Konstantinos Mykoniatis

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the…

Abstract

Purpose

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the effect of lean manufacturing (LM) techniques on manufacturing facilities and the transition of a mass production (MP) facility to incorporating LM techniques.

Design/methodology/approach

In this paper, the authors apply a hybrid simulation approach to improve an educational automotive assembly line and provide guidelines for implementing different LM techniques. Specifically, the authors describe the design, development, verification and validation of a hybrid discrete-event and agent-based simulation model of a LEGO® car assembly line to analyze, improve and assess the system’s performance. The simulation approach examines the base model (MP) and an alternative scenario (just-in-time [JIT] with Heijunka).

Findings

The hybrid simulation approach effectively models the facility. The alternative simulation scenario (implementing JIT and Heijunka LM techniques) improved all examined performance metrics. In more detail, the system’s lead time was reduced by 47.37%, the throughput increased by 5.99% and the work-in-progress for workstations decreased by up to 56.73%.

Originality/value

This novel hybrid simulation approach provides insight and can be potentially extrapolated to model other manufacturing facilities and evaluate transition scenarios from MP to LM.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 5 October 2023

Zhixiong Chen, Weishan Long, Li Song and Xinglin Li

This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis.

Abstract

Purpose

This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis.

Design/methodology/approach

First, the authors carried out wear experiments on Si3N4–GCr15 and GCr15–GCr15 friction pairs through the ball-disc wear test rig to explore the tribological properties of their materials. Second, using ANSYS/LS-DYNA simulation software, the dynamic simulation analysis of hybrid bearings was carried out under certain working conditions, and the dynamic contact stress of all-steel bearings of the same size was simulated and compared. Finally, the change of the maximum contact stress of the main bearing under the change of load and rotation speed was studied.

Findings

The results show that the Si3N4–GCr15 pair has better tribological performance. At the same time, under the conditions of high speed and heavy load, the simulation analysis shows that the contact stress between the ceramic ball and the raceway of the ring is smaller than the steel ball. That is, hybrid bearings have better transient mechanical properties than all-steel bearings. With the speed increasing to 12,000 r/min, the maximum stress point will shift in the inner and outer rings.

Originality/value

In this study, the tribological and transient mechanical properties of Si3N4 material were comprehensively analyzed through wear experiments and dynamic simulation analysis, which provided a reference for the design of hybrid bearings for next-generation aeroengines.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 November 2023

Yang Li and Tianxiang Lan

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual…

Abstract

Purpose

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual parameters.

Design/methodology/approach

This analysis is based on the numerical simulation data obtained, using the hybrid finite element–discrete element (FE–DE) method. The forecasting model was compared with the numerical results and the accuracy of the model was evaluated by the root mean square (RMS) and the RMS error, the mean absolute error and the mean absolute percentage error.

Findings

The multivariate nonlinear regression model can accurately predict the nonlinear relationships between injection rate, leakoff coefficient, elastic modulus, permeability, Poisson’s ratio, pore pressure and final fracture area. The regression equations obtained from the Newton iteration of the least squares method are strong in terms of the fit to the six sensitive parameters, and the model follow essentially the same trend with the numerical simulation data, with no systematic divergence detected. Least absolutely deviation has a significantly weaker performance than the least squares method. The percentage contribution of sensitive parameters to the final fracture area is available from the simulation results and forecast model. Injection rate, leakoff coefficient, permeability, elastic modulus, pore pressure and Poisson’s ratio contribute 43.4%, −19.4%, 24.8%, −19.2%, −21.3% and 10.1% to the final fracture area, respectively, as they increased gradually. In summary, (1) the fluid injection rate has the greatest influence on the final fracture area. (2)The multivariate nonlinear regression equation was optimally obtained after 59 iterations of the least squares-based Newton method and 27 derivative evaluations, with a decidability coefficient R2 = 0.711 representing the model reliability and the regression equations fit the four parameters of leakoff coefficient, permeability, elastic modulus and pore pressure very satisfactorily. The models follow essentially the identical trend with the numerical simulation data and there is no systematic divergence. The least absolute deviation has a significantly weaker fit than the least squares method. (3)The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Originality/value

The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 June 2023

Fabian Müller, Paul Baumanns and Kay Hameyer

The calculation of electromagnetic fields can involve many degrees of freedom (DOFs) to achieve accurate results. The DOFs are directly related to the computational effort of the…

Abstract

Purpose

The calculation of electromagnetic fields can involve many degrees of freedom (DOFs) to achieve accurate results. The DOFs are directly related to the computational effort of the simulation. The effort is decreased by using the proper generalized decomposition (PGD) and proper orthogonalized decomposition (POD). The purpose of this study is to combine the advantages of both methods. Therefore, a hybrid enrichment strategy is proposed and applied to different electromagnetic formulations.

Design/methodology/approach

The POD is an a-priori method, which exploits the solution space by decomposing reference solutions of the field problem. The disadvantage of this method is given by the unknown number of solutions necessary to reconstruct an accurate field representation. The PGD is an a-priori approach, which does not rely on reference solutions, but require much more computational effort than the POD. A hybrid enrichment strategy is proposed, based on building a small POD model and using it as a starting point of the PGD enrichment process.

Findings

The hybrid enrichment process is able to accurately approximate the reference system with a smaller computational effort compared to POD and PGD models. The hybrid enrichment process can be combined with the magneto-dynamic T-Ω formulation and the magnetic vector potential formulation to solve eddy current or non-linear problems.

Originality/value

The PGD enrichment process is improved by exploiting a POD. A linear eddy current problem and a non-linear electrical machine simulation are analyzed in terms of accuracy and computational effort. Further the PGD-AV formulation is derived and compared to the PGD-T-Ω reduced order model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2024

Fateh Mebarek-Oudina, Ines Chabani, Hanumesh Vaidya and Abdul Aziz I. Ismail

This paper aims to present a numerical study that investigates the flow of MgO-Al2O3/water hybrid nanofluid inside a porous elliptical-shaped cavity, in which we aim to examine…

Abstract

Purpose

This paper aims to present a numerical study that investigates the flow of MgO-Al2O3/water hybrid nanofluid inside a porous elliptical-shaped cavity, in which we aim to examine the performance of this thermal system when exposed to a magnetic field via heat transfer features and entropy generation.

Design/methodology/approach

The configuration consists of the hybrid nanofluid out layered by a cold ellipse while it surrounds a non-square heated obstacle; the thermal structure is under the influence of a horizontal magnetic field. This problem is implemented in COMSOL multiphysics, which solves the related equations described by the “Darcy-Forchheimer-Brinkman” model through the finite element method.

Findings

The results illustrated as streamlines, isotherms and average Nusselt number, along with the entropy production, are given as functions of: the volume fraction, and shape factor to assess the behaviour of the properties of the nanoparticles. Darcy number and porosity to designate the impact of the porous features of the enclosure, and finally the strength of the magnetic induction described as Hartmann number. The outcomes show the increased pattern of the thermal and dynamical behaviour of the hybrid nanofluid when augmenting the concentration, shape factor, porosity and Darcy number; however, it also engenders increased formations of irreversibilities in the system that were revealed to enhance with the permeability and the great properties of the nanofluid. Nevertheless, this thermal enhanced pattern is shown to degrade with strong Hartmann values, which also reduced both thermal and viscous entropies. Therefore, it is advised to minimize the magnetic influence to promote better heat exchange.

Originality/value

The investigation of irreversibilities in nanofluids heat transfer is an important topic of research with practical implications for the design and optimization of heat transfer systems. The study’s findings can help improve the performance and efficiency of these systems, as well as contribute to the development of sustainable energy technologies. The study also offers an intriguing approach that evaluates entropy growth in this unusual configuration with several parameters, which has the potential to transform our understanding of complicated fluid dynamics and thermodynamic processes, and at the end obtain the best thermal configuration possible.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

27

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 February 2024

Ganesh Narkhede

Efforts to implement supplier selection and order allocation (SSOA) approaches in small and medium-sized enterprises (SMEs) are quite restricted due to the lack of affordable and…

Abstract

Purpose

Efforts to implement supplier selection and order allocation (SSOA) approaches in small and medium-sized enterprises (SMEs) are quite restricted due to the lack of affordable and simple-to-use strategies. Although there is a huge amount of literature on SSOA techniques, very few studies have attempted to address the issues faced by SMEs and develop strategies from their point of view. The purpose of this study is to provide an effective, practical, and time-tested integrated SSOA framework for evaluating the performance of suppliers and allocating orders to them that can improve the efficiency and competitiveness of SMEs.

Design/methodology/approach

This study was conducted in two stages. First, an integrated supplier selection approach was designed, which consists of the analytic hierarchy process and newly developed measurement alternatives and ranking using compromise solution to evaluate supplier performance and rank them. Second, the Wagner-Whitin algorithm is used to determine optimal order quantities and optimize inventory carrying and ordering costs. The joint impact of quantity discounts is also evaluated at the end.

Findings

Insights derived from the case study proved that the proposed approach is capable of assisting purchase managers in the SSOA decision-making process. In addition, this case study resulted in 10.89% total cost savings and fewer stock-out situations.

Research limitations/implications

Criteria selected in this study are based on the advice of the managers in the selected manufacturing organizations. So the methods applied are limited to manufacturing SMEs. There were some aspects of the supplier selection process that this study could not explore. The development of an effective, reliable supplier selection procedure is a continuous process and it is indeed certainly possible that there are other aspects of supplier selection that are more crucial but are not considered in the proposed approach.

Practical implications

Purchase managers working in SMEs will be the primary beneficiaries of the developed approach. The suggested integrated approach can make a strategic difference in the working of SMEs.

Originality/value

A practical SSOA framework is developed for professionals working in SMEs. This approach will help SMEs to manage their operations effectively.

Details

Journal of Global Operations and Strategic Sourcing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5364

Keywords

1 – 10 of over 1000