Search results

1 – 10 of over 35000
Article
Publication date: 30 September 2013

Haiou Zhang, Xiangping Wang, Guilan Wang and Yang Zhang

The purpose of this paper is to report a new direct metal manufacturing method which integrates freeform deposition process and micro rolling process, introduce the manufacturing…

1865

Abstract

Purpose

The purpose of this paper is to report a new direct metal manufacturing method which integrates freeform deposition process and micro rolling process, introduce the manufacturing principle and show the advantages of this method.

Design/methodology/approach

This paper introduces the hybrid manufacturing principle and devices first. Then, the key parameters of hybrid manufacturing process are studied by contrast experiments. The results of comparisons of manufacturing accuracy, microstructure and tensile test between freeform fabricated parts and hybrid manufactured parts show the advantages of this new direct manufacturing method.

Findings

The experiments results show that the accuracy of hybrid manufacturing method is improved obviously comparing with arc-based freeform deposition manufacturing method; the microstructure of the hybrid manufacturing part turns into cellular crystal instead of dendrite; the tensile strength of the part increases by 33 percent and the tensile deformation improved more than two times.

Originality/value

The paper presents a new hybrid direct metal manufacturing method for the first time. The hybrid manufacturing devices are developed. The experiments results show that the hybrid manufacturing method can be used on directly fabricating large metal components with outstanding quality, efficiency and low cost. The application prospect is great.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 May 2007

Yuan Ren, Pingyuan Cui and Enjie Luan

This paper aims to investigate, a new optimization algorithm for complex orbit transfer missions with low‐thrust propulsion system, which minimizes the drawbacks of traditional…

Abstract

Purpose

This paper aims to investigate, a new optimization algorithm for complex orbit transfer missions with low‐thrust propulsion system, which minimizes the drawbacks of traditional optimization methods, such as bad convergence, difficulty of initial guesses and local optimality.

Design/methodology/approach

First, the trajectory optimization problem comes down to a nonlinear constraint parameter optimization by using the concept of traditional hybrid method. Then, one utilizes genetic algorithm (GA) to solve this parameter optimization problem after treating the constraints with the simulated annealing (SA) and random penalty function. Finally, one makes use of localized optimization to improve the precision of the final solutions.

Findings

This algorithm not only keeps the advantages of traditional hybrid method such as high precision and smooth solutions, but also inherits the merits of GA which could avoid initial guess work and obtain a globally optimal solution.

Research limitations/implications

Further, research is required to reduce the computational complexity when the transfer trajectory is very complex and/or has many adjustable variables.

Practical implications

By using this method, the globally optimal solutions of some complex missions, which could not be obtained by traditional method, could be found.

Originality/value

This method combines the GA with traditional hybrid method, and utilizes SA and random penalty functions to treat with constraints, and then gives out a super convergence way to find the globally optimal low‐thrust transfer orbit.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 December 1999

X.G. Ming, K.L. Mak and J.Q. Yan

Computer aided process planning (CAPP) is generally acknowledged as a significant activity to achieve computer‐integrated manufacturing (CIM). In coping with the dynamic changes…

Abstract

Computer aided process planning (CAPP) is generally acknowledged as a significant activity to achieve computer‐integrated manufacturing (CIM). In coping with the dynamic changes in the modern manufacturing environment, the awareness of developing intelligent CAPP systems has to be raised, in an attempt to generate more successful implementations of intelligent manufacturing systems. In this paper, the architecture of a hybrid intelligent inference model for implementing the intelligent CAPP system is developed. The detailed structure for such a model is also constructed. The establishment of the hybrid intelligent inference model will enable the CAPP system to adapt automatically to the dynamic manufacturing environment, with a view to the ultimate realization of full implementation of intelligent manufacturing systems in enterprises.

Details

Integrated Manufacturing Systems, vol. 10 no. 6
Type: Research Article
ISSN: 0957-6061

Keywords

Open Access
Article
Publication date: 28 February 2023

Ahmad Hariri, Pedro Domingues and Paulo Sampaio

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

2010

Abstract

Purpose

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

Design/methodology/approach

A conceptual classification scheme is presented to analyze the hybrid QFD-MCDM methods. Then some recommendations are given to introduce directions for future research.

Findings

The results show that among all related areas, the manufacturing application has the most frequency of published papers regarding hybrid QFD-MCDM methods. Moreover, using uncertainty to establish a hybrid QFD-MCDM the relevant papers have been considered during the time interval 2004–2021.

Originality/value

There are various shortcomings in conventional QFD which limit its efficiency and potential applications. Since 2004, when MCDM methods were frequently adopted in the quality management context, increasing attention has been drawn from both practical and academic perspectives. Recently, the integration of MCDM techniques into the QFD model has played an important role in designing new products and services, supplier selection, green manufacturing systems and sustainability topics. Hence, this survey reviewed hybrid QFD-MCDM methods during 2004–2021.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 22 September 2021

Fatemeh Chahkotahi and Mehdi Khashei

Improving the accuracy and reducing computational costs of predictions, especially the prediction of time series, is one of the most critical parts of the decision-making…

Abstract

Purpose

Improving the accuracy and reducing computational costs of predictions, especially the prediction of time series, is one of the most critical parts of the decision-making processes and management in different areas and organizations. One of the best solutions to achieve high accuracy and low computational costs in time series forecasting is to develop and use efficient hybrid methods. Among the combined methods, parallel hybrid approaches are more welcomed by scholars and often have better performance than sequence ones. However, the necessary condition of using parallel combinational approaches is to estimate the appropriate weight of components. This weighting stage of parallel hybrid models is the most effective factor in forecasting accuracy as well as computational costs. In the literature, meta-heuristic algorithms have often been applied to weight components of parallel hybrid models. However, such that algorithms, despite all unique advantages, have two serious disadvantages of local optima and iterative time-consuming optimization processes. The purpose of this paper is to develop a linear optimal weighting estimator (LOWE) algorithm for finding the desired weight of components in the global non-iterative universal manner.

Design/methodology/approach

In this paper, a LOWE algorithm is developed to find the desired weight of components in the global non-iterative universal manner.

Findings

Empirical results indicate that the accuracy of the LOWE-based parallel hybrid model is significantly better than meta-heuristic and simple average (SA) based models. The proposed weighting approach can improve 13/96%, 11/64%, 9/35%, 25/05% the performance of the differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO) and SA-based parallel hybrid models in electricity load forecasting. While, its computational costs are considerably lower than GA, PSO and DE-based parallel hybrid models. Therefore, it can be considered as an appropriate and effective alternative weighing technique for efficient parallel hybridization for time series forecasting.

Originality/value

In this paper, a LOWE algorithm is developed to find the desired weight of components in the global non-iterative universal manner. Although it can be generally demonstrated that the performance of the proposed weighting technique will not be worse than the meta-heuristic algorithm, its performance is also practically evaluated in real-world data sets.

Article
Publication date: 13 August 2018

Hongxing Jia, Shizhu Tian, Shuangjiang Li, Weiyi Wu and Xinjiang Cai

Hybrid simulation, which is a general technique for obtaining the seismic response of an entire structure, is an improvement of the traditional seismic test technique. In order to…

Abstract

Purpose

Hybrid simulation, which is a general technique for obtaining the seismic response of an entire structure, is an improvement of the traditional seismic test technique. In order to improve the analysis accuracy of the numerical substructure in hybrid simulation, the purpose of this paper is to propose an innovative hybrid simulation technique. The technique combines the multi-scale finite element (MFE) analysis method and hybrid simulation method with the objective of achieving the balance between the accuracy and efficiency for the numerical substructure simulation.

Design/methodology/approach

To achieve this goal, a hybrid simulation system is established based on the MTS servo control system to develop a hybrid analysis model using an MFE model. Moreover, in order to verify the efficiency of the technique, the hybrid simulation of a three-storey benchmark structure is conducted. In this simulation, a ductile column—represented by a half-scale scale specimen—is selected as the experimental element, meanwhile the rest of the frame is modelled as microscopic and macroscopic elements in the Abaqus software simultaneously. Finally, to demonstrate the stability and accuracy of the proposed technique, the seismic response of the target structure obtained via hybrid simulation using the MFE model is compared with that of the numerical simulation.

Findings

First, the use of the hybrid simulation with the MFE model yields results similar to those obtained by the fine finite element (FE) model using solid elements without adding excessive computing burden, thus advancing the application of the hybrid simulation in large complex structures. Moreover, the proposed hybrid simulation is found to be more versatile in structural seismic analysis than other techniques. Second, the hybrid simulation system developed in this paper can perform hybrid simulation with the MFE model as well as handle the integration and coupling of the experimental elements with the numerical substructure, which consists of the macro- and micro-level elements. Third, conducting the hybrid simulation by applying earthquake motion to simulate seismic structural behaviour is feasible by using Abaqus to model the numerical substructure and harmonise the boundary connections between three different scale elements.

Research limitations/implications

In terms of the implementation of the hybrid simulation with the MFE model, this work is helpful to advance the hybrid simulation method in the structural experiment field. Nevertheless, there is still a need to refine and enhance the current technique, especially when the hybrid simulation is used in real complex engineering structures, having numerous micro-level elements. A large number of these elements may render the relevant hybrid simulations unattainable because the time consumed in the numeral calculations can become excessive, making the testing of the loading system almost difficult to run smoothly.

Practical implications

The MFE model is implemented in hybrid simulation, enabling to overcome the problems related to the testing accuracy caused by the numerical substructure simplifications using only macro-level elements.

Originality/value

This paper is the first to recognise the advantage of the MFE analysis method in hybrid simulation and propose an innovative hybrid simulation technique, combining the MFE analysis method with hybrid simulation method to strike a delicate balance between the accuracy and efficiency of the numerical substructure simulation in hybrid simulation. With the help of the coordinated analysis of FEs at different scales, not only the accuracy and reliability of the overall seismic analysis of the structure is improved, but the computational cost can be restrained to ensure the efficiency of hybrid simulation.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 September 2019

Farman Afzal, Shao Yunfei, Mubasher Nazir and Saad Mahmood Bhatti

In the past decades, artificial intelligence (AI)-based hybrid methods have been increasingly applied in construction risk management practices. The purpose of this paper is to…

6650

Abstract

Purpose

In the past decades, artificial intelligence (AI)-based hybrid methods have been increasingly applied in construction risk management practices. The purpose of this paper is to review and compile the current AI methods used for cost-risk assessment in the construction management domain in order to capture complexity and risk interdependencies under high uncertainty.

Design/methodology/approach

This paper makes a content analysis, based on a comprehensive literature review of articles published in high-quality journals from the years 2008 to 2018. Fuzzy hybrid methods, such as fuzzy-analytical network processing, fuzzy-artificial neural network and fuzzy-simulation, have been widely used and dominated in the literature due to their ability to measure the complexity and uncertainty of the system.

Findings

The findings of this review article suggest that due to the limitation of subjective risk data and complex computation, the applications of these AI methods are limited in order to address cost overrun issues under high uncertainty. It is suggested that a hybrid approach of fuzzy logic and extended form of Bayesian belief network (BBN) can be applied in cost-risk assessment to better capture complexity-risk interdependencies under uncertainty.

Research limitations/implications

This study only focuses on the subjective risk assessment methods applied in construction management to overcome cost overrun problem. Therefore, future research can be extended to interpret the input data required to deal with uncertainties, rather than relying solely on subjective judgments in risk assessment analysis.

Practical implications

These results may assist in the management of cost overrun while addressing complexity and uncertainty to avoid chaos in a project. In addition, project managers, experts and practitioners should address the interrelationship between key complexity and risk factors in order to plan risk impact on project cost. The proposed hybrid method of fuzzy logic and BBN can better support the management implications in recent construction risk management practice.

Originality/value

This study addresses the applications of AI-based methods in complex construction projects. A proposed hybrid approach could better address the complexity-risk interdependencies which increase cost uncertainty in project.

Details

International Journal of Managing Projects in Business, vol. 14 no. 2
Type: Research Article
ISSN: 1753-8378

Keywords

Article
Publication date: 3 August 2015

Alexandre Lamoureux and Bantwal R. (Rabi) Baliga

The purpose of this paper is to first present the key features of hybrid numerical methods that enable cost-effective simulations of complex thermofluid systems, and then…

1968

Abstract

Purpose

The purpose of this paper is to first present the key features of hybrid numerical methods that enable cost-effective simulations of complex thermofluid systems, and then demonstrate the formulation and application of such a method.

Design/methodology/approach

A hybrid numerical method is formulated for simulations of a closed-loop thermosyphon operating with slurries of a micro-encapsulated phase-change material suspended in distilled water. The slurries are modeled as homogeneous mixtures, with inputs of effective properties and overall heat-loss coefficients. Combinations of an axisymmetric two-dimensional (2D) control-volume finite-element method and a segmented-quasi-one-dimensional (1D) model are used to achieve cost-effective simulations. Proper matching of the solutions at the interfaces between adjacent axisymmetric 2D and quasi-1D zones is ensured by incorporating and heuristically determining suitable lengths of pre- and post-heating (and also pre- and post-cooling) sections.

Findings

In the demonstration problem, which would strictly require full three-dimensional simulations of the fluid flow and heat transfer phenomena, the proposed hybrid 1D/2D numerical method produces results that are in very good agreement with those obtained in a complementary experimental investigation.

Originality/value

The hybrid numerical methods discussed in this paper allow cost-effective computer simulations of complex thermofluid systems. These methods can therefore serve as very useful tools for the design, parametric studies, and optimization of such systems.

Article
Publication date: 11 January 2008

A. Arefmanesh and M.A. Alavi

This paper aims to develop a hybrid finite difference‐finite element method and apply it to solve the three‐dimensional energy equation in non‐isothermal fluid flow past over a…

Abstract

Purpose

This paper aims to develop a hybrid finite difference‐finite element method and apply it to solve the three‐dimensional energy equation in non‐isothermal fluid flow past over a tube.

Design/methodology/approach

To implement the hybrid scheme, the tube length is partitioned into uniform segments by choosing grid points along its length, and a plane perpendicular to the tube axis is drawn at each of the points. Subsequently, the Taylor‐Galerkin finite element technique is employed to discretize the energy equation in the planes; while the derivatives along the tube are discretized using the finite difference method.

Findings

To demonstrate the validity of the proposed numerical scheme, three‐dimensional test cases have been solved using the method. The variation of L2‐norm of the error with mesh refinement shows that the numerical solution converges to the exact solution with mesh refinement. Moreover, comparison of the computational time duration shows that the proposed method is approximately three times faster than the 3D finite element method. In the non‐isothermal fluid flow around a tube for Re=250 and Pr=0.7, the results show that the Nusselt number decreases with the increase in the tube length and, for the tube length greater than six times the tube diameter, the average Nusselt number converges to the value for the two‐dimensional case.

Originality/value

A hybrid finite difference‐finite element method has been developed and applied to solve the 3D transient energy equation for different test cases. The proposed method is faster, and computationally more efficient, compared with the 3D finite element method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2018

Ana Sauca, Thomas Gernay, Fabienne Robert, Nicola Tondini and Jean-Marc Franssen

The purpose of this paper is to propose a method for hybrid fire testing (HFT) which is unconditionally stable, ensures equilibrium and compatibility at the interface and captures…

Abstract

Purpose

The purpose of this paper is to propose a method for hybrid fire testing (HFT) which is unconditionally stable, ensures equilibrium and compatibility at the interface and captures the global behavior of the analyzed structure. HFT is a technique that allows assessing experimentally the fire performance of a structural element under real boundary conditions that capture the effect of the surrounding structure.

Design/methodology/approach

The paper starts with the analysis of the method used in the few previous HFT. Based on the analytical study of a simple one degree-of-freedom elastic system, it is shown that this previous method is fundamentally unstable in certain configurations that cannot be easily predicted in advance. Therefore, a new method is introduced to overcome the stability problem. The method is applied in a virtual hybrid test on a 2D reinforced concrete beam part of a moment-resisting frame.

Findings

It is shown through analytical developments and applicative examples that the stability of the method used in previous HFT depends on the stiffness ratio between the two substructures. The method is unstable when implemented in force control on a physical substructure that is less stiff than the surrounding structure. Conversely, the method is unstable when implemented in displacement control on a physical substructure stiffer than the remainder. In multi-degrees-of-freedom tests where the temperature will affect the stiffness of the elements, it is generally not possible to ensure continuous stability throughout the test using this former method. Therefore, a new method is proposed where the stability is not dependent on the stiffness ratio between the two substructures. Application of the new method in a virtual HFT proved to be stable, to ensure compatibility and equilibrium at the interface and to reproduce accurately the global structural behavior.

Originality/value

The paper provides a method to perform hybrid fire tests which overcomes the stability problem lying in the former method. The efficiency of the new method is demonstrated in a virtual HFT with three degrees-of-freedom at the interface, the next step being its implementation in a real (laboratory) hybrid test.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 35000