Search results

1 – 10 of over 1000
Article
Publication date: 16 September 2013

S. Venkat Prasat and R. Subramanian

The purpose of this paper is to explore the use of fly ash and graphite particles as low cost reinforcing materials for improved wear resistance, enhanced mechanical properties…

Abstract

Purpose

The purpose of this paper is to explore the use of fly ash and graphite particles as low cost reinforcing materials for improved wear resistance, enhanced mechanical properties and reduction in density of hybrid composites.

Design/methodology/approach

The AlSi10Mg/fly ash/graphite (Al/FA/Gr) hybrid composite was synthesised by stir casting method. The dry sliding wear and friction behaviour of hybrid composites were studied using pin-on-disc machine by varying parameters like load and weight fraction of fly ash, and compared with the base metal alloy and aluminium-graphite composite. The tests were conducted with a constant sliding speed of 2 m/s and sliding distance of 2,400 m.

Findings

The hybrid composites exhibit higher hardness, higher tensile strength and lower density when compared to unreinforced alloy and aluminium-graphite composite. The incorporation of fly ash and graphite particles as reinforcements caused a reduction in the wear rate and coefficient of friction (COF) of the hybrid composites. The improvement in the tribological characteristics occured due to the load carrying capacity of hard fly ash particles and the formation of a lubricating film of graphite between the sliding interfaces. The wear rates and COF of unreinforced aluminium alloy and composites increase with an increase in the applied normal load. The wear rates and COF of hybrid composites decrease with an increase in the fly ash content. 9 wt.% fly ash and 3 wt.% graphite reinforced hybrid composite exhibited the highest wear resistance and lowest COF at all applied loads. Abrasive wear and delamination were dominant in the mild wear regime of aluminium alloy and composites. Due to subsurface deformation and crack propagation, plate-like wear debris were generated during delamination wear. In the severe wear regime, the dominant wear mechanism was adhesive wear with formation of transfer layers.

Practical implications

It is expected that these findings will contribute towards the development of lightweight and low cost aluminium products with improved tribological and mechanical properties.

Originality/value

The wear and friction data have been made available in this article for the use of Al/FA/Gr hybrid composites in tribological applications.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Ramazan Karslioğlu, Hatem Akbulut, Mehmet Uysal and Guray Bağdatli

The objective of the present investigation is to prepare a Zn–Al matrix (73 wt. per cent Zn + 27 wt. per cent Al) reinforced with SiC and graphite (Gr) hybrid composites by a…

Abstract

Purpose

The objective of the present investigation is to prepare a Zn–Al matrix (73 wt. per cent Zn + 27 wt. per cent Al) reinforced with SiC and graphite (Gr) hybrid composites by a rapid current sintering technique. Well-known Zn-based alloys are good candidates for load bearing applications. However, some limitations exist in Zn sublimation during casting and solid-state sintering and low-sliding velocity applications. The purpose is to develop new hybrid composites for self-lubricated bearing alloys by the facile production technique of current-activated sintering for these types of hybrid composites at very short sintering periods.

Design/methodology/approach

Designing a special power unit for current sintering. The hybrid composites of the Zn–Al matrix were reinforced with 20 vol. per cent SiC and different amounts of Gr (2.5, 5.0, 7.5 and 10 weight per cent) and sintered rapidly by current sintering. Tribological tests for wear behaviors and self-lubrication effect were studied. The authors' approach is mainly to produce low-cost load-bearing materials.

Findings

Successful and rapid production of Zn–Al alloy SiC/Gr hybrid composites in this study led to increasing load bearing capacity, decreasing friction coefficient and wear rate and production of good substitutes for conventional bearing applications.

Originality/value

A conventional Zn alloy was reinforced with both SiC and Gr particles. This work is original in two ways. It is noted after the literature survey that this alloy is first reinforced with two different types of reinforcements as a hybrid type of composite. Second, the consolidation of this hybrid material was carried out by a direct current for eliminating Zn sublimation and shortening the production time. In tribological applications demanding strength and lubrication requirements, Zn–Al/SiC/Gr hybrid composites were assessed as good substitutes for conventional materials owing to improved wear resistance as a result of combined reinforcement of SiC and Gr particulates.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 October 2018

Shubhajit Das, Chandrasekaran M., Sutanu Samanta, Palanikumar Kayaroganam and Paulo Davim J.

Composite materials are replacing the traditional materials because of their remarkable properties and the addition of nanoparticles making a new trend in material world. The nano…

Abstract

Purpose

Composite materials are replacing the traditional materials because of their remarkable properties and the addition of nanoparticles making a new trend in material world. The nano addition effect on tribological properties is essential to be used in automotive and industrial applications. The current work investigates the sliding wear behavior of an aluminum alloy (AA) 6061-based hybrid metal matrix composites (HMMCs) reinforced with SiC and B4C ceramic nanoparticles.

Design/methodology/approach

The hybrid composites are fabricated using stir casting process. Two different compositions were fabricated by varying the weight percentage of the ceramic reinforcements. An attempt has been made to study the wear and friction behavior of the composites using pin-on-disc tribometer to consider the effects of sliding speed, sliding distance and the normal load applied.

Findings

The tribological tests are carried out and the performances were compared. Increase in sliding speed to 500 rpm resulted in the rise of temperature of the contacting tribo-surface which intensified the wear rate at 30N load for the HMMC. The presence of the ceramic particles further reduced the contact region of the mating surface thus reducing the coefficient of friction at higher sliding speeds. Oxidation, adhesion, and abrasion were identified to be the main wear mechanisms which were further confirmed using energy dispersive spectroscopy and field emission scanning electron microscopy (FESEM) of the worn out samples.

Practical implications

The enhancement of wear properties is achieved because of the addition of the SiC and B4C ceramic nanoparticles, in which these composites can be applied to automobile, aerospace and industrial products where the mating parts with less weight is required.

Originality/value

The influence of nanoparticles on the tribological performance is studied in detail comprising of two different ceramic particles which is almost new research. The sliding effect of hybrid composites with nano materials paves the way for using these materials in engineering and domestic applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 September 2012

N. Radhika, R. Subramanian, S. Venkat Prasat and B. Anandavel

Recent trends in material science show a considerable interest in the manufacturing of metal matrix composites to meet the stringent demands of lightweight, high strength and…

Abstract

Purpose

Recent trends in material science show a considerable interest in the manufacturing of metal matrix composites to meet the stringent demands of lightweight, high strength and corrosion resistance. Aluminium is the popular matrix metal currently in vogue that can be reinforced with ceramic materials such as particulates to meet the desired property. The purpose of this paper is to fabricate hybrid metal matrix composites to improve the dry sliding wear resistance and to study of the effect of sliding speed, load and reinforcement (alumina and graphite) on wear properties, as well as its contact friction.

Design/methodology/approach

The present study addresses the dry sliding wear behaviour of Al‐Si10Mg alloy reinforced with 3, 6 and 9 wt% of alumina along with 3 wt% of graphite. Stir casting method was used to fabricate the composites. Mechanical properties such as hardness and tensile strength have been evaluated. A pin‐on‐disc wear test apparatus was used to evaluate the wear rate and coefficient of friction by varying the loads of 20, 30 and 40 N, sliding speeds of 1.5 m/s, 2.5 m/s and 3.5 m/s at a constant sliding distance of 2100 m.

Findings

Mechanical properties of hybrid metal matrix composites (HMMCs) have shown significant improvement. The wear rate and coefficient of friction for alloy and composites decreased with increase in sliding speed and increased with increase in applied load. Temperature rise during wearing process for monolithic alloy was larger than that of HMMCs and Al/9% Al2O3/3% Gr composite showing the minimum temperature rise.The worn surfaces of the composites were investigated using scanning electron microscope.

Practical implications

The paper shows that aluminium composites can improve strength and wear resistance.

Originality/value

HMMCs has proven to be useful in improving the dry sliding wear resistance.

Details

Industrial Lubrication and Tribology, vol. 64 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2019

Praveen Kumar Bannaravuri and Anil Kumar Birru

The purpose of this paper is to determine the use of BLA along with SiC as economical reinforcements to enhance the mechanical behavior of hybrid composite. The purpose of this…

Abstract

Purpose

The purpose of this paper is to determine the use of BLA along with SiC as economical reinforcements to enhance the mechanical behavior of hybrid composite. The purpose of this research is the development of cost-effective aluminum hybrid metal matrix composites.

Design/methodology/approach

The present research work investigation evaluated the mechanical properties of Al-4.5%Cu alloy, Al-4.5Cu/10SiC, Al-4.5Cu/10SiC/2BLA and Al-4.5Cu/10SiC/4BLA composites by the Stir casting method. The fabricated composites were analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and hardness and tensile test.

Findings

The microstructure modification with the addition of reinforcement particles in the matrix alloy and clear interface in between matrix and particles are observed. The density of the composite increased with the addition of SiC and decreased with the addition of BLA in comparison with that of matrix alloy. The hardness and tensile strength of the single-reinforced composite and hybrid composites improved with the addition of reinforcement particles. The strengthening of composites was due to load-bearing capacity of reinforcement particles over the matrix alloy and increased dislocation density of composites materials. The tensile failure mechanism of the composites is reveled with SEM analysis.

Practical implications

The papers reports the development of cost-effective and light weight aluminum hybrid composites with remarkable enhancement in the mechanical and tribological properties with the addition of BLA as economical reinforcement along with SiC.

Originality/value

The density, hardness and tensile values of fabricated aluminium composites were presented in this paper for the use in the engineering applications where the weight and cost are consider as a primary factors.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 August 2023

Dinesh Kumar, Surjit Angra and Satnam Singh

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications…

Abstract

Purpose

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications. Advanced composites, such as carbon-fiber-reinforced polymers and ceramic matrix composites, offer significant advantages over traditional metallic materials in terms of weight reduction, stiffness and strength. These materials have been used in various aerospace applications, including aircraft, engines and thermal protection systems.

Design/methodology/approach

The development of design of experiment–based hybrid aluminum composites using the stir-casting technique has further enhanced the performance and cost-effectiveness of these materials. The design of the experiment was followed to fabricate hybrid composites with nano cerium oxide (nCeO2) and graphene nanoplatelets (GNPs) as reinforcements in the Al-6061 matrix.

Findings

The Al6061 + 3% nCeO2 + 3% GNPs exhibited a high hardness of 119.6 VHN. The ultimate tensile strength and yield strength are 113.666 MPa and 73.08 MPa, respectively. A uniform distribution of reinforcement particulates was achieved with 3 Wt.% of each reinforcement in the matrix material, which is analyzed using scanning electron microscopy. Fractography revealed that brittle and ductile fractures caused the failure of the fractured specimens in the tensile test.

Practical implications

The manufactured aluminum composite can be applied in a range of exterior and interior structural parts like wings, wing boxes, motors, gears, engines, antennas, floor beams, etc. The fan case material of the GEnx engine (currently using carbon-fiber reinforcement plastic) for the Boeing 7E7 can be another replacement with manufactured hybrid aluminum composite, which predicts weight savings per engine of close to 120 kg.

Originality/value

The development of hybrid reinforcements, where two or more types of reinforcements are used in combination, is also a novel approach to improving the properties of these composites. Advanced composite materials are known for their high strength-to-weight ratio. If the newly developed composite material demonstrates superior properties, it can potentially be used to replace traditional materials in aircraft manufacturing. By reducing the weight of aircraft structures, fuel efficiency can be improved, leading to reduced operating costs and environmental impact. This allows for a more customized solution for specific application requirements and can lead to further advancements in materials science and technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 August 2021

Kalaiyarasan A, Sundaram S, Gunasekaran K and Bensam Raj J.

Aerospace field is demanding a material with superior strength and high resistance against wear, tear and corrosion. The current study aimed to develop a new material with high…

Abstract

Purpose

Aerospace field is demanding a material with superior strength and high resistance against wear, tear and corrosion. The current study aimed to develop a new material with high performance to be applicable in aerospace field

Design/methodology/approach

A metal matrix composite AA8090-WC-ZrC was fabricated using stir casting method and its tribological behavior was investigated. Totally, five composites viz. AA/Z, AA/W, AA/WZ (1:3), AA/WZ (1:1) & AA/WZ (3:1) were prepared. Micro hardness, tensile and wear study were performed on the fabricated composites and the results were compared with AA8090 alloy

Findings

Vickers hardness test resulted that the AA/W composite showed the higher hardness value of 160 HB compared to other materials due to the reinforcing effect of WC particles with high hardness. Tensile test reported that the AA/W composite displayed the maximum tensile strength of 502 MPa owing to the creation of more dislocation density. Further, wear study showed that the AA/W composite exhibited the least wear rate of 0.0011 mm3/m because of the more resisting force offered by the WC particles. Furthermore, the AA/W composite showed the slightest mass loss of 0.0028 g and lower COF value of 0.31 due to the hinder effect of WC particle to the movement of atoms in AA8090 alloy

Originality/value

This work is original in the field of aerospace engineering and materials science which deals with the fabrication of AA8090 alloy with the reinforcement particles such as tungsten carbide and zirconium carbide. The impact of the combination of hybrid particles and their volume fractions on the tribological properties has been investigated in this work. This work would provide new scientific information to society.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Viswanatha B.M., M. Prasanna Kumar, S. Basavarajappa and T.S. Kiran

This paper aims to investigate the wear behaviors of aged metal matrix composites and of the as-cast Al-Si alloy by using a pin-on-disk wear testing machine at room temperature.

Abstract

Purpose

This paper aims to investigate the wear behaviors of aged metal matrix composites and of the as-cast Al-Si alloy by using a pin-on-disk wear testing machine at room temperature.

Design/methodology/approach

Hypoeutectic (Al-7Si) alloy reinforced with low volume fractions of SiC particles (SiCp) and graphite (Gr) particles were prepared by the stir-casting process. It was found that the addition of 9 Wt.% of SiCp and 3 Wt.% of Gr particles conferred a beneficial effect in reducing the wear rate of the composites.

Findings

The worn-out surfaces of the specimens were examined using scanning electron microscopy (SEM); the extensive micro cracking occurs on the surface of the Al-7Si alloy tested at lower loads. The growth of these microcracks finally led to the delamination of the base alloy surface. The reinforcements (SiCp and Gr) particles tended to reduce the extent of plastic deformation in the surface layer, thereby reducing extensively the occurrence of micro cracking in the composites.

Originality/value

From the results, it is revealed that the quantity of wear rate was less for aged specimens compared to the as-cast specimens. The worn-out surfaces were studied using electron dispersive spectroscopy, and wear debris was analyzed using SEM.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2012

C. Velmurugan, R. Subramanian, S. Thirugnanam and B. Anandavel

The purpose of this technical paper is to investigate the friction and wear behaviour of heat treated Al 6061 alloy and Al 6061 SiC‐graphite particulate reinforced hybrid…

Abstract

Purpose

The purpose of this technical paper is to investigate the friction and wear behaviour of heat treated Al 6061 alloy and Al 6061 SiC‐graphite particulate reinforced hybrid composites subjected to different ageing durations.

Design/methodology/approach

The composites have been prepared by stir casting process with varying percentages of SiC and graphite particles. The cast 6061 alloy and its composites were subjected to solutionising treatment at a temperature of 803 K for 1 hr followed by quenching in water. The quenched samples were then subjected to artificial ageing for different durations of 4, 6, 8 hr at a temperature of 448 K. Tests were performed on heat treated Al 6061 alloy and its composites using pin‐on‐disc apparatus. Hardness measurements were also made on the specimens. The wear surfaces of the composites were analyzed using scanning electron microscopy.

Findings

During wear test of specimens the wear resistance of the hybrid composites was found to increase with increase in ageing durations. The microscopic examination of the wear surfaces shows that the base alloy and composites wear primarily because of abrasion and delamination. The hardness result shows that the hardness of the composites increased with decreasing weight percentage of graphite particles.

Originality/value

The content of this paper is fully research oriented and the finding from this investigation will be useful for society and also the automobile industries, especially in the making of brake drums.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 March 2020

Shashi Prakash Dwivedi and Garima Dwivedi

In the current scenario, air pollution and soil pollution from the industries wastes are one of the major problems all over the world. Further, disposal of these wastes from…

Abstract

Purpose

In the current scenario, air pollution and soil pollution from the industries wastes are one of the major problems all over the world. Further, disposal of these wastes from industries are very costly. However, several attempts were carried out by various researchers in the past to use these wastes. One of the most common waste products is bagasse from sugar industries. These hazardous bagasse wastes lead to air and soil pollution. This study aims to recycle bagasse waste in the development of aluminium base composite as partial replacement of ceramic particles.

Design/methodology/approach

In the present investigation, recycled bagasse waste was used in the development of aluminium base composite as partial replacement of ceramic particles such as SiC, Al2O3 and B4C. Production industries of these ceramic particles (SiC, B4C and Al2O3) emit huge amount of greenhouse gases such as N2O3, CH4, CO2 and H2O. These green house gases produce lots of environment problem. Furthermore, production of these ceramic particles is also costly. AA6061 aluminium alloy was taken as matrix material. Composite material was developed using the stir casting technique.

Findings

Microstructure results showed proper distribution of bagasse ash and MgO powder in the aluminium base metal matrix composite. It was notified from analysis that minimum corrosion loss and minimum porosity were found for Al/2.5% bagasse ash/12.5% MgO powder composite. For the same composition, hardness and thermal expansion were also observed better as compared to other selected compositions. However, density and cost of composites continuously decrease by increasing percentage of bagasse ash in development of composite.

Originality/value

Results showed about 11.30% improvement in tensile strength, 11.64% improvement in specific strength and 40% improvement in hardness by using bagasse ash as reinforcement with MgO powder in development of aluminium base composite.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 1000