Search results

1 – 10 of over 1000
Article
Publication date: 30 September 2014

C. Pornet, S. Kaiser, A.T. Isikveren and M. Hornung

The aim of this paper is to assess the potential of fuel-battery hybrid narrow-body (180PAX) transport aircraft according to different design ranges for an entry-into-service…

1158

Abstract

Purpose

The aim of this paper is to assess the potential of fuel-battery hybrid narrow-body (180PAX) transport aircraft according to different design ranges for an entry-into-service (EIS) of 2035.

Design/methodology/approach

The philosophy used in the design of the twin-engine fuel-battery hybrid concept is to use the power of an electric motor during cruise to drive a single propulsive device, whereas the other one is powered conventionally by an advanced gas turbine. A methodology for the sizing and performance assessment of hybrid energy aircraft was previously proposed by the authors. Based on this methodology, the overall sizing effects at aircraft level are considered to size the hybrid aircraft to different range applications. To evaluate the hybrid concept, performance was contrasted against a conventional aircraft projected to EIS 2035 and sized for identical requirements. Additionally, sensitivity of the prospects against different battery technology states was analysed.

Findings

The best suited aircraft market for the application of the fuel-battery hybrid transport aircraft concept considered is the regional segment. Under the assumption of a battery-specific energy of 1.5 kWh/kg, block fuel reduction up to 20 per cent could be achieved concurrently with a gate-to-gate neutral energy consumption compared to an advanced gas-turbine aircraft. However, a large increase in maximum take-off weight (MTOW) occurs resulting from battery weight, the additional electrical system weight, and the cascading sizing effects. It strongly counteracts the benefit of the hybrid-electric propulsion technology used in this concept for lower battery-specific energy and for longer design ranges.

Practical implications

The findings will contribute to the evaluation of the feasibility and impact of hybrid energy transport aircraft as potential key enablers of the European and US aeronautical program goals towards 2035.

Originality/value

The paper draws its value from the consideration of the overall sizing effects at aircraft level and in particular the impact of the hybrid-electric propulsion system to investigate the prospects of fuel-battery hybrid narrow-body transport aircraft sized at different design ranges.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 30 September 2014

C. Pornet, S. Kaiser and C. Gologan

The aim of the paper is to establish the COst-Specific Air Range (COSAR) as a new figure-of-merit based on the cost of energy to optimise the flight profile of a hybrid energy

Abstract

Purpose

The aim of the paper is to establish the COst-Specific Air Range (COSAR) as a new figure-of-merit based on the cost of energy to optimise the flight profile of a hybrid energy aircraft.

Design/methodology/approach

After reviewing the expression and the application of the specific air range (SAR) and of the energy-specific air range (ESAR), the need of a new figure-of-merit for flight technique optimisation of hybrid energy aircraft is motivated. Based on the specific cost of the energies consumed, the mathematical expression of COSAR is derived. To enable optimum economics operations, a cost index (CI) derivation is introduced for a variety of hybrid-electric concepts to consider the additional time-related cost. The application of COSAR and of the CI is demonstrated for cruise optimisation of a hybrid-electric retrofit aircraft concept.

Findings

As a consequence of the consumption of multiple energy sources in a hybrid aircraft, optimisation according to the objective functions SAR and ESAR leads to minimum in-flight CO2 emissions and minimum energy consumption for a given stage length. While the optimisation of a single energy source aircraft according to these figures-of-merit directly results in minimum energy cost for a given unit range, this statement is no longer true for hybrid-energy aircraft. Consequently, introducing a new figure-of-merit established on the specific cost of the energies consumed enables flight technique optimisation for minimum energy cost of hybrid-energy aircraft. Additionally, the related time-cost is taken into account by means of a CI definition for minimum operating cost.

Practical implications

COSAR may serve as an alternative to SAR used today as the standard figure-of-merit for fuel optimised flight profile. Using COSAR and the CI allow airlines to adapt the flight profiles of hybrid-energy aircraft fleets according to the energy market price and their related cost of time to determine optimum economical flight profile.

Originality/value

Using COSAR as a figure-of-merit, the flight profile of hybrid energy aircraft can be optimised for minimum energy cost. Time-related costs are considered for optimum operating economics by utilisation of the CI definition for hybrid energy aircraft.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 4 May 2020

José Pedro Soares Pinto Leite and Mark Voskuijl

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid

8042

Abstract

Purpose

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraftaircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management.

Design/methodology/approach

To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory.

Findings

The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found.

Originality/value

The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

Christopher Perullo and Dimitri Mavris

The purpose of this study is to examine state-of-the-art in hybrid-electric propulsion system modeling and suggest new methodologies for sizing such advanced concepts. Many…

1300

Abstract

Purpose

The purpose of this study is to examine state-of-the-art in hybrid-electric propulsion system modeling and suggest new methodologies for sizing such advanced concepts. Many entities are involved in the modelling and design of hybrid electric aircraft; however, the highly multidisciplinary nature of the problem means that most tools focus heavily on one discipline and over simplify others to keep the analysis reasonable in scope. Correctly sizing a hybrid-electric system requires knowledge of aircraft and engine performance along with a working knowledge of electrical and energy storage systems. The difficulty is compounded by the multi-timescale dynamic nature of the problem. Furthermore, the choice of energy management in a hybrid electric system presents multiple degrees of freedom, which means the aircraft sizing problem now becomes not just a root-finding exercise, but also a constrained optimization problem.

Design/methodology/approach

The hybrid electric vehicle sizing problem can be sub-divided into three areas: modelling methods/fidelity, energy management and optimization technique. The literature is reviewed to find desirable characteristics and features of each area. Subsequently, a new process for sizing a new hybrid electric aircraft is proposed by synthesizing techniques from model predictive control and detailed conceptual design modelling. Elements from model predictive control and concurrent optimization are combined to formulate a new structure for the optimization of the sizing and energy management of future aircraft.

Findings

While the example optimization formulation provided is specific to a hybrid electric concept, the proposed structure is general enough to be adapted to any vehicle concept which contains multiple degrees of control freedom that can be optimized continuously throughout a mission.

Originality/value

The proposed technique is novel in its application of model predictive control to the conceptual design phase.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 August 2022

Dominik Quillet, Vincent Boulanger, David Rancourt, Richard Freer and Pierre Bertrand

Parallel hybrid electric (HE) propulsion retrofit is a promising alternative to reduce fuel burn of aircraft operating on short regional flights. However, if the batteries are…

Abstract

Purpose

Parallel hybrid electric (HE) propulsion retrofit is a promising alternative to reduce fuel burn of aircraft operating on short regional flights. However, if the batteries are depleted at the end of the mission, the hybrid powertrain designs with downsized gas turbines (GTs) and additional electric motors might not meet the one-engine inoperative (OEI) missed approach climb performance required by the certification. Alternatively, hybrid designs using the original full-size GT can perform one engine climb without electric assistance. This paper aims to evaluate the impact of overshoot climb requirements on powertrain design and performance comparing the two design approaches.

Design/methodology/approach

An aircraft-level parametric mission analysis model is used to evaluate aircraft performance combined with an optimization framework including multiple constraints. An indirect approach using metamodels is used to optimize powertrain sizing and operation strategy.

Findings

Considering OEI climb requirements, no benefits were found using a design with downsized GTs. Equivalent fuel burns were found for hybrid designs that keep the original size GTs, but do not require electric energy for the OEI overshoot at the end of the mission. Then, it is recommended to size the GT to maintain the emergency climb capabilities with no electric assistance to ensure power availability regardless of remaining battery energy.

Originality/value

This work introduces a new perspective on parallel HE sizing with consideration for the dependency of power capability at aircraft level on the electric energy availability in case of critical mission scenarios such as overshoot climb at the end of the mission.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

A.T. Isikveren, S. Kaiser, C. Pornet and P.C. Vratny

The aim of this study was to first establish foundational algebraic expressions that parametrically describe any advanced dual-energy storage–propulsion–power system (DESPPS) and…

1026

Abstract

Purpose

The aim of this study was to first establish foundational algebraic expressions that parametrically describe any advanced dual-energy storage–propulsion–power system (DESPPS) and then proceed to declare the array of fundamental independent variables necessary for the sizing and optimisation of such systems. Upon procurement of a pre-design-level integrated aircraft performance model and the subsequent verification against previously published high-end low-fidelity generated results, opportunity was taken in formulating a set of battery-based DESPPS related design axioms and sizing heuristics.

Design/methodology/approach

Derivation of algebraic expressions related to describing DESPPS architectures are based on first principles. Integrated performance modelling by way of full analytical fractional change transformations anchored according to a previously published Energy Specific Air Range (ESAR) figure-of-merit originally derived using the Breguet–Coffin differential equation for vehicular efficiency. Weights prediction of sub-systems that constitute the entire aircraft including DESPPS constituents emphasises an analytical foundation with minimal implementation of linear correlation factors or coefficients of proportionality. An iterative maximum take-off weight build-up algorithm emphasising expedient and stable convergence was fashioned. All prediction methods pertaining to integrated performance were verified according to previously published battery-based DESPPS results utilising high-end low-fidelity methods.

Findings

For all types of DESPPS, two new fundamental independent non-dimensional variables were declared: the Supplied Power Ratio (related to converted power afforded by each energy carrier); and, the Activation Ratio (describing the relative nature of utilisation with respect to time afforded by the motive power device associated with each energy source). For a given set of standalone sub-system energy conversion efficiencies, the parametric descriptor of degree-of-hybridisation (DoH) for Power was found to be solely a function of the Supplied Power Ratio, whereas in contrast, the DoH for Energy was found to be a more complex synthetic function described by comingling of Supplied Power Ratio and the Activation Ratio. Upon examination of the integrated aircraft performance model derived in this treatise, for purposes of investigating CO2-emissions reduction potential for battery-based DESPPS using kerosene as one of the energy sources, one salient observation was maximising the ESAR figure-of-merit is not an appropriate objective or intermediary function for future optimisation work. It was found maximising block fuel reduction through the use of maximum ESAR would lead to ever diminishing design ranges and curtailment of the payload-range working capacity of the aircraft.

Practical implications

Opportunity is now given to design and optimise aircraft utilising any type of DESPPS architecture. It was established that designing for battery-based DESPPS aircraft can be achieved effectively in a two-stage process that may not require aircraft morphologies more exotic than the so-called “wing-and-tube”. Firstly, a suitably projected state-of-the-art aircraft with solely advanced gas-turbine technology for the propulsion and power system needs to be produced. Thereafter, a revised version of this baseline projected aircraft now using DESPPS architecture should be conceived. A recommendation related to CO2-emissions reduction potential for battery-based DESPPS using kerosene as one of the energy sources is that during optimisation work the multi-objective formulation should comprise at least two functions: block fuel and operating economics. In all instances, it was advised that the objective function of block fuel should be tempered by an equality constraint of ESAR parity with the baseline projected aircraft using gas-turbine only technology.

Originality/value

A complete, unified analytical description of DESPPS that is universally applicable to any type of energy carrier has been derived and verified for battery-based dual-energy systems. Correspondingly, a set of aircraft design axioms and sizing heuristics relevant to battery-based DESPPS have been presented.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 April 2022

Melih Yildiz, Utku Kale and Andras Nagy

The purpose of this study is to show the emissions related to electric consumption in electric aviation. Aviation, being one of the main transportation and economical driver of…

148

Abstract

Purpose

The purpose of this study is to show the emissions related to electric consumption in electric aviation. Aviation, being one of the main transportation and economical driver of global trade and consumerism, is responsible for an important ratio of anthropogenic emissions. Electric energy use in aircraft propulsion is gaining interest as a method of providing sustainable and environmentally friendly aviation. However, the production of electricity is more energy and emission sensitive compared to conventional jet fuel.

Design/methodology/approach

A well-to-pump (WTP) energy use and emission analysis were conducted to compare the electricity and conventional jet fuel emissions. For the calculations, a software and related database which is developed by Argonne’s Greenhouse gas, Regulated Emissions, and Energy use in Transportation (GREET®) model is used to determine WTP analysis for electricity production and delivery pathways and compared it to baseline conventional jet fuel.

Findings

The WTP results show that electricity production and transmission have nine times higher average emissions compared to WTP emissions of conventional jet fuel. The future projection of emission calculations presented in this paper reveals that generating electricity from more renewable sources provides only a 50% reduction in general emissions. The electricity emission results are sensitive to the sources of production.

Originality/value

The main focus of this study is to analyze the WTP emissions of electric energy and conventional jet fuel for use on hybrid aircraft propulsion.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 December 2019

Ralph H. Jansen, Cheryl L. Bowman, Sean Clarke, David Avanesian, Paula J. Dempsey and Rodger W. Dyson

This paper aims to review national aeronautics and space administration (NASA’s) broad investments in electrified aircraft propulsion (EAP). NASA investments are guided by an…

Abstract

Purpose

This paper aims to review national aeronautics and space administration (NASA’s) broad investments in electrified aircraft propulsion (EAP). NASA investments are guided by an assessment of potential market impacts, technical key performance parameters, and technology readiness attained through a combination of studies, enabling fundamental research and flight research.

Design/methodology/approach

The impact of EAP varies by market and NASA is considering three markets as follows: national/international, on-demand mobility and short-haul regional air transport. Technical advances in key areas have been made that indicate EAP is a viable technology. Flight research is underway to demonstrate integrated solutions and inform standards and certification processes.

Findings

A key finding is that sufficient technical advances in key areas have been made, which indicate EAP is a viable technology for aircraft. Significant progress has been made to reduce EAP adoption barriers and further work is needed to transition the technology to a commercial product and improve the technology, so it is applicable to large transonic aircraft.

Practical implications

Significant progress has been made to reduce EAP adoption barriers and further work is needed to transition the technology to a commercial product and improve the technology, so it is applicable to large transonic aircraft.

Originality/value

This paper will review the activities of the hybrid gas-electric subproject of the Advanced Air Transport Technology Project, the Revolutionary Vertical Lift Technology Project and the X-57 Flight Demonstration Project, and discuss the potential EAP benefits for commercial and military applications. This paper focuses on the vehicle-related activities, however, there are related NASA activities in air space management and vehicle autonomy activities, as well as a breakthrough technology project called the Convergent Aeronautics Solutions Project. The target audience is people interested in EAP.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 August 2022

Lionel Dongmo Fouellefack, Lelanie Smith and Michael Kruger

A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not capable…

Abstract

Purpose

A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not capable of achieving a high range and endurance due to the low energy density of its batteries. Alternatively, conventional UAVs (cUAVs) using fuel with an internal combustion engine (ICE) produces more noise and thermal signatures which is undesirable, especially if the air vehicle is required to patrol at low altitudes and remain undetected by ground patrols. This paper aims to investigate the impact of implementing hybrid propulsion technology to improve on the endurance of the UAV (based on a 13.6 kg UAV).

Design/methodology/approach

A HE-UAV model is developed to analyze the fuel consumption of the UAV for given mission profiles which were then compared to a cUAV. Although, this UAV size was used as reference case study, it can potentially be used to analyze the fuel consumption of any fixed wing UAV of similar take-off weight. The model was developed in a Matlab-Simulink environment using Simulink built-in functionalities, including all the subsystem of the hybrid powertrain. That is, the ICE, electric motor, battery, DC-DC converter, fuel system and propeller system as well as the aerodynamic system of the UAV. In addition, a ruled-based supervisory controlled strategy was implemented to characterize the split between the two propulsive components (ICE and electric motor) during the UAV mission. Finally, an electrification scheme was implemented to account for the hybridization of the UAV during certain stages of flight. The electrification scheme was then varied by changing the time duration of the UAV during certain stages of flight.

Findings

Based on simulation, it was observed a HE-UAV could achieve a fuel saving of 33% compared to the cUAV. A validation study showed a predicted improved fuel consumption of 9.5% for the Aerosonde UAV.

Originality/value

The novelty of this work comes with the implementation of a rule-based supervisory controller to characterize the split between the two propulsive components during the UAV mission. Also, the model was created by considering steady flight during cruise, but not during the climb and descend segment of the mission.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Content available

Abstract

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 1748-8842

1 – 10 of over 1000