Search results

1 – 10 of over 1000
Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 November 2023

Libiao Bai, Mengqin Yang, Tong Pan and Yichen Sun

Selecting and scheduling optimal project portfolio simultaneously is a complex decision-making problem faced by organizations to realize the strategy. However, dynamic synergy…

Abstract

Purpose

Selecting and scheduling optimal project portfolio simultaneously is a complex decision-making problem faced by organizations to realize the strategy. However, dynamic synergy relationships among projects complicate this problem. This study aims at constructing a project portfolio selection and scheduling (PPSS) model while quantifying the dynamic synergetic effects to provide decision support for managing PPSS problems.

Design/methodology/approach

This study develops a mathematical model for PPSS with the objective of maximal project portfolio benefits (PPBs). To make the results align with the strategy, comprehensive PPBs are divided into financial and non-financial aspects based on the balanced scorecard. Then, synergy benefits evolve dynamically in the time horizon, and system dynamics is employed to quantify them. Lastly, a case example is conducted to verify the applicability of the proposed model.

Findings

The proposed model is an applicable model for PPSS while incorporating dynamic synergy. It can help project managers obtain the results that which project should be selected and when it should start while achieving optimal PPBs.

Originality/value

This study complements prior PPSS research in two aspects. First, financial and non-financial PPBs are designed as new criteria for PPSS, making the results follow the strategy. Second, this study illuminates the dynamic characteristic of synergy and quantifies the synergetic effect. The proposed model provides insights into managing a PPSS effectively.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 January 2024

Fateh Mebarek-Oudina, Ines Chabani, Hanumesh Vaidya and Abdul Aziz I. Ismail

This paper aims to present a numerical study that investigates the flow of MgO-Al2O3/water hybrid nanofluid inside a porous elliptical-shaped cavity, in which we aim to examine…

Abstract

Purpose

This paper aims to present a numerical study that investigates the flow of MgO-Al2O3/water hybrid nanofluid inside a porous elliptical-shaped cavity, in which we aim to examine the performance of this thermal system when exposed to a magnetic field via heat transfer features and entropy generation.

Design/methodology/approach

The configuration consists of the hybrid nanofluid out layered by a cold ellipse while it surrounds a non-square heated obstacle; the thermal structure is under the influence of a horizontal magnetic field. This problem is implemented in COMSOL multiphysics, which solves the related equations described by the “Darcy-Forchheimer-Brinkman” model through the finite element method.

Findings

The results illustrated as streamlines, isotherms and average Nusselt number, along with the entropy production, are given as functions of: the volume fraction, and shape factor to assess the behaviour of the properties of the nanoparticles. Darcy number and porosity to designate the impact of the porous features of the enclosure, and finally the strength of the magnetic induction described as Hartmann number. The outcomes show the increased pattern of the thermal and dynamical behaviour of the hybrid nanofluid when augmenting the concentration, shape factor, porosity and Darcy number; however, it also engenders increased formations of irreversibilities in the system that were revealed to enhance with the permeability and the great properties of the nanofluid. Nevertheless, this thermal enhanced pattern is shown to degrade with strong Hartmann values, which also reduced both thermal and viscous entropies. Therefore, it is advised to minimize the magnetic influence to promote better heat exchange.

Originality/value

The investigation of irreversibilities in nanofluids heat transfer is an important topic of research with practical implications for the design and optimization of heat transfer systems. The study’s findings can help improve the performance and efficiency of these systems, as well as contribute to the development of sustainable energy technologies. The study also offers an intriguing approach that evaluates entropy growth in this unusual configuration with several parameters, which has the potential to transform our understanding of complicated fluid dynamics and thermodynamic processes, and at the end obtain the best thermal configuration possible.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

Frank Ato Ghansah, Weisheng Lu and Benjamin Kwaku Ababio

The COVID-19 pandemic has impacted the construction industry, yet still, it is unclear from existing studies about the critical challenges imposed on quality assurance (QA)…

Abstract

Purpose

The COVID-19 pandemic has impacted the construction industry, yet still, it is unclear from existing studies about the critical challenges imposed on quality assurance (QA), particularly Cross-border Construction Logistics and Supply Chain (Cb-CLSC). Thus, this study aims to identify and examine the critical challenges of QA of Cb-CLSC during the COVID-19 pandemic.

Design/methodology/approach

The aim is achieved via an embedded mixed-method approach pragmatically involving a desk literature review and engaging 150 experts across the globe using expert surveys, and results confirmed by semi-structured interviews. The approach is based on Interpretive Structural Modelling (ISM) as its foundation.

Findings

The study revealed ten critical challenges of QA, with the top four including “the shortage of raw construction material (C7)”, “design changes (C6)”, “collaboration and communication difficulties (C1)” and “changes in work practices (C10)”. However, examining the interrelationships among the critical challenges using ISM confirmed C7 and C10 as the most critical challenges. The study again revealed that the critical challenges are sensitive and capable of affecting themselves due to the nature of their interrelationship based on MICMAC analysis. Hence, being consistent with why all the challenges were considered critical amid the pandemic. Sentiment analysis revealed that the critical challenges have not been entirely negative but also positive by creating three areas of opportunities for improvement: technology adoption, worker management, and work process management. However, four areas of challenges in the QA include cost, raw material, time, and work process, including inspection, testing, auditing, communication, etc.

Practical implications

The finding provides a convenient point of reference to researchers, policymakers, practitioners, and decision-makers on formulating policies to enhance the effectiveness of construction QA during the pandemic through to the post-pandemic era.

Originality/value

The study enriches the extant literature on QA, Cb-CLSC, and the COVID-19 pandemic in the construction industry by identifying the critical challenges and examining the interrelationships among them. This provides a better understanding of how the construction QA has been affected by the pandemic and the opportunities created.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 18 January 2024

Zaihua Luo, Juliang Xiao, Sijiang Liu, Mingli Wang, Wei Zhao and Haitao Liu

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too…

Abstract

Purpose

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification.

Design/methodology/approach

First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified.

Findings

Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models.

Originality/value

This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 February 2024

Ahmed Jan, Muhammad F. Afzaal, Muhammad Mushtaq, Umer Farooq and Muzammil Hussain

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Abstract

Purpose

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Design/methodology/approach

The transport equations are transformed into nondimensional partial differential equations. The local nonsimilarity (LNS) technique is implemented to truncate nonsimilar dimensionless system. The LNS truncated equation can be treated as ordinary differential equations. The numerical results of the equation are accomplished through the implementation of the bvp4c solver, which leverages the fourth-order three-stage Lobatto IIIa formula as a finite difference scheme.

Findings

The findings of a comparative investigation carried out under diverse physical limitations demonstrate that ternary HNFs exhibit remarkably elevated thermal efficiency in contrast to conventional nanofluids.

Originality/value

The LNS approach (Mahesh et al., 2023; Khan et al., 20223; Farooq et al., 2023) that we have proposed is not currently being used to clarify the dynamical issue of HNF via porous media. The LNS method, in conjunction with the bvp4c up to its second truncation level, yields numerical solutions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the appropriate parameters, are explained and shown visually via tables and diagrams.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 November 2023

Jonas Koreis, Dominic Loske and Matthias Klumpp

Increasing personnel costs and labour shortages have pushed retailers to give increasing attention to their intralogistics operations. We study hybrid order picking systems, in…

226

Abstract

Purpose

Increasing personnel costs and labour shortages have pushed retailers to give increasing attention to their intralogistics operations. We study hybrid order picking systems, in which humans and robots share work time, workspace and objectives and are in permanent contact. This necessitates a collaboration of humans and their mechanical coworkers (cobots).

Design/methodology/approach

Through a longitudinal case study on individual-level technology adaption, we accompanied a pilot testing of an industrial truck that automatically follows order pickers in their travel direction. Grounded on empirical field research and a unique large-scale data set comprising N = 2,086,260 storage location visits, where N = 57,239 storage location visits were performed in a hybrid setting and N = 2,029,021 in a manual setting, we applied a multilevel model to estimate the impact of this cobot settings on task performance.

Findings

We show that cobot settings can reduce the time required for picking tasks by as much as 33.57%. Furthermore, practical factors such as product weight, pick density and travel distance mitigate this effect, suggesting that cobots are especially beneficial for short-distance orders.

Originality/value

Given that the literature on hybrid order picking systems has primarily applied simulation approaches, the study is among the first to provide empirical evidence from a real-world setting. The results are discussed from the perspective of Industry 5.0 and can prevent managers from making investment decisions into ineffective robotic technology.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 14 March 2024

Weiqiang Xue, Jingfeng Shen and Yawen Fan

The transient loads on the spherical hybrid sliding bearings (SHSBs) rotor system during the process of accelerating to stable speed are related to time, which exhibits a complex…

Abstract

Purpose

The transient loads on the spherical hybrid sliding bearings (SHSBs) rotor system during the process of accelerating to stable speed are related to time, which exhibits a complex transient response of the rotor dynamics. The current study of the shaft center trajectory of the SHSBs rotor system is based on the assumption that the rotational speed is constant, which cannot truly reflect the trajectory of the rotor during operation. The purpose of this paper truly reflects the trajectory of the rotor and further investigates the stability of the rotor system during acceleration of SHSBs.

Design/methodology/approach

The model for accelerated rotor dynamics of SHSBs is established. The model is efficiently solved based on the fourth-order Runge–Kutta method and then to obtain the shaft center trajectory of the rotor during acceleration.

Findings

Results show that the bearing should choose larger angular acceleration in the acceleration process from startup to the working speed; rotor system is more stable. With the target rotational speed increasing, the changes in the shaft trajectory of the acceleration process are becoming more complex, resulting in more time required for the bearing stability. When considering the stability of the rotor system during acceleration, the rotor equations of motion provide a feasible solution for the simulation of bearing rotor system.

Originality/value

The study can simulate the running stability of the shaft system from startup to the working speed in this process, which provides theoretical guidance for the stability of the rotor system of the SHSBs in the acceleration process.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

Understanding Intercultural Interaction: An Analysis of Key Concepts, 2nd Edition
Type: Book
ISBN: 978-1-83753-438-8

1 – 10 of over 1000