Search results

1 – 10 of over 1000
Article
Publication date: 1 October 2002

Yoshihiro Kusuda

Since the advent of Honda’s ASIMO and Sony’s AIBO, robot fever has broken out in the general public of Japan. However no significant business has yet materialized, except in the…

1382

Abstract

Since the advent of Honda’s ASIMO and Sony’s AIBO, robot fever has broken out in the general public of Japan. However no significant business has yet materialized, except in the pet robot business in the toy industry. On the other hand serious basic research for humanoid robots is going on which may have an impact on the future of robotics. This report describes the current status of Japanese humanoid fever and its reality.

Details

Industrial Robot: An International Journal, vol. 29 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 June 2019

Asita Kumar Rath, Dayal R. Parhi, Harish Chandra Das, Priyadarshi Biplab Kumar, Manoj Kumar Muni and Kitty Salony

Humanoids have become the center of attraction for many researchers dealing with robotics investigations by their ability to replace human efforts in critical interventions. As a…

Abstract

Purpose

Humanoids have become the center of attraction for many researchers dealing with robotics investigations by their ability to replace human efforts in critical interventions. As a result, navigation and path planning has emerged as one of the most promising area of research for humanoid models. In this paper, a fuzzy logic controller hybridized with genetic algorithm (GA) has been proposed for path planning of a humanoid robot to avoid obstacles present in a cluttered environment and reach the target location successfully. The paper aims to discuss these issues.

Design/methodology/approach

Here, sensor outputs for nearest obstacle distances and bearing angle of the humanoid are first fed as inputs to the fuzzy logic controller, and first turning angle (TA) is obtained as an intermediate output. In the second step, the first TA derived from the fuzzy logic controller is again supplied to the GA controller along with other inputs and second TA is obtained as the final output. The developed hybrid controller has been tested in a V-REP simulation platform, and the simulation results are verified in an experimental setup.

Findings

By implementation of the proposed hybrid controller, the humanoid has reached its defined target position successfully by avoiding the obstacles present in the arena both in simulation and experimental platforms. The results obtained from simulation and experimental platforms are compared in terms of path length and time taken with each other, and close agreements have been observed with minimal percentage of errors.

Originality/value

Humanoids are considered more efficient than their wheeled robotic forms by their ability to mimic human behavior. The current research deals with the development of a novel hybrid controller considering fuzzy logic and GA for navigational analysis of a humanoid robot. The developed control scheme has been tested in both simulation and real-time environments and proper agreements have been found between the results obtained from them. The proposed approach can also be applied to other humanoid forms and the technique can serve as a pioneer art in humanoid navigation.

Details

International Journal of Intelligent Unmanned Systems, vol. 7 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 17 November 2023

Matthew Ikuabe, Clinton Aigbavboa and Ernest Kissi

In most developing countries, the delivery of construction project is still characterised by inefficiencies resulting from the use of outdated methods and techniques, which…

Abstract

Purpose

In most developing countries, the delivery of construction project is still characterised by inefficiencies resulting from the use of outdated methods and techniques, which retards project performance. Hence, the call for the implementation of innovative technologies such as humanoids in the execution of construction projects as it has been proven to be very effective in other sectors while improving productivity and quality of work. Consequently, this study looks at how humanoids can be used in the construction industry and what benefits they can bring.

Design/methodology/approach

The study employed a quantitative approach underpinned in post-positivist philosophical view using questionnaire as the instrument for data collection. The target respondents were construction professionals, and purposive sampling was used, while a response rate of 62.5% was gotten. The methods of data analysis were mean item score, standard deviation and one-sample t-test.

Findings

The findings revealed that humanoids can be used in progress tracking, auto-documentation and inspection and surveillance of tasks in construction activities. Also, the most important benefits of using humanoids in construction work were found to be shorter delivery times, fewer injuries and more accurate work.

Practical implications

The outcome of the study gives professionals and relevant stakeholders in construction and other interested parties' information about the areas where humanoids can be used and their benefits in construction.

Originality/value

The novelty of this study is that it is a pioneering study in South Africa on humanoids' usage in the construction industry. Also, it expands the existing borderline of the conservation of construction digitalisation for enhanced project execution.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 24 October 2023

Ying Chang, Chubing Zhang, Tiange Li and Yina Li

This study aims to examine the effects of the perceived warmth and competence of humanoid robots on customer tolerance of service failure through the affective response and the…

Abstract

Purpose

This study aims to examine the effects of the perceived warmth and competence of humanoid robots on customer tolerance of service failure through the affective response and the boundary condition of relationship norms.

Design/methodology/approach

Two experimental studies were conducted to investigate the effects of perceived warmth and competence of humanoid robots’ physical appearances on tolerance of service failure and the mediating role of anger. The boundary influence of relationship norms is also explored.

Findings

The results reveal that the perception of warmth (vs. competence) robot leads to less (more) anger, which significantly results in tolerance of service failure. However, customer tolerance is insignificant under exchange norms, as the undelivered service violates the expectations of both warm and competent robots.

Practical implications

This study provides practical guidance for hospitality managers to implement humanoid robots in a way that minimizes the negative outcomes of service failure. Managers should also think about the appropriate match of different types of humanoid robots and relationship norms in which robots will be deployed.

Originality/value

This study contributes to the tolerance literature by taking a social cognition perspective to investigate the effect of humanoid robots’ physical appearances on customers’ reactions to service failure. The findings also reveal that its affective mechanism lies in the effect of expectancy violations of service failure on tolerance. Furthermore, this study extends the literature on relationship norms to the influence of company factors on effective humanoid robot implementation.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research…

1047

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 August 2009

Ming Xie, Lei Wang, Xian Linbo, Jing Li, Hejin Yang, Chengsen Song and Li Zhang

Autonomous mobile manipulation depends on a lot of effort at various levels. In general, the hardware design is as important as algorithm (or software) design. In particular, the…

Abstract

Purpose

Autonomous mobile manipulation depends on a lot of effort at various levels. In general, the hardware design is as important as algorithm (or software) design. In particular, the absence of certain capabilities of hardware can seriously affect the feasibility and performance of algorithms. The purpose of this paper is to present work on developing hardware capability for mobile manipulation by low‐cost humanoids (LOCH) humanoid robot.

Design/methodology/approach

This paper presents research work on developing the hardware support which enables vision‐guided mobile manipulation realized on top of a biped humanoid robot called LOCH. One important goal which guides the development is to achieve the hardware capability with human‐like dexterity, modularity, functionality, and appearance.

Findings

This paper discusses the detail of solutions leading to the realization of the intended hardware capability, focusing in particular on the issues related to mechanism, actuation, distributed sensing, and distributed control of humanoid head, humanoid hands and humanoid arms. Finally, the paper shows the result of the actual prototype, which can be controlled by a remote control station through wireless connection.

Research limitations/implications

In designing a machine, it is common to do motor‐sizing and material selection. Since these are standard procedures, these details are omitted because readers with the training in mechanical engineering should be able to work out such details in order to select the appropriate motors and materials. Also, this paper does not delve into the description of the biped system of LOCH humanoid, because such work requires another long paper in order to reveal major details.

Originality/value

This paper presents the major detail of research efforts toward developing hardware capabilities for achieving autonomous mobile manipulation by LOCH humanoid robot, focusing on three important modules, namely: perception head, human‐like hands, and arms. The uniqueness of this work is twofold. First, LOCH humanoid robot's perception head has the most versatile sensing capabilities, which are fully integrated into a compact and human‐like head. Second, each of LOCH humanoid robot's hands has 14 degrees of freedom, which are realized within a mechanism which is of human‐hand size and shape. In addition, the perception head, humanoid hands and humanoid arms are seamlessly integrated together owing to the adoption of a distributed system which supports networked sensing and control through the use of both control area network bus and transmission control protocol/internet protocol internet.

Details

Industrial Robot: An International Journal, vol. 36 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 June 2009

M. Xie, Z.W. Zhong, L. Zhang, L.B. Xian, L. Wang, H.J. Yang, C.S. Song and J. Li

Planning and control of humanoid biped walking has been an active research topic for many years. But, there is no definite answer to the question of how to practicre‐examinedally…

Abstract

Purpose

Planning and control of humanoid biped walking has been an active research topic for many years. But, there is no definite answer to the question of how to practicre‐examinedally achieve speedy and stable walking in real‐time and in a changing environment. The purpose of this paper is to re‐examine the issue of planning and controlling humanoid biped walking, then to propose two new ideas.

Design/methodology/approach

The first idea is to treat the supporting foot of a biped to be part of the ground. In this way, there is a foot reaction force acting at a fixed virtual joint, which can be at, or below, the ankle joint. And, a new concept is come our that is named as in‐foot ZMP in contrast to the existing concept of on‐ground ZMP. The unique benefit with this new concept of in‐foot ZMP is that the ZMP control is no longer an issue because the in‐foot ZMP can be controlled so as to to be at a fixed virtual joint during a stable walking. Such a fixed virtual joint can be called a ZMP joint.

Findings

The second idea is to focus on hip's trajectory (instead of on‐ground ZMP's trajectory) and to split a hip's dynamic response into two independent parts: one is the steady‐state response contributing to the stability of walking (or standing), and the other is the transient response contributing to the speed of walking. This idea allows us to explicitly postulate the necessary and sufficient condition for achieving leg stability as well as the necessary and sufficient condition for achieving foot stability. The paper shows that the implementation of these two new ideas help realize a unified framework for task‐guided, intention‐guided, and sensor‐guided, planning and control of humanoid biped walking.

Originality/value

This paper first re‐examines the issue of planning and controlling humanoid biped walking, then proposes two new ideas. The first idea is to treat the supporting foot of a biped to be part of the ground. The second idea is to focus on hip's trajectory (instead of on‐ground ZMP's trajectory) and to split a hip's dynamic response into two independent parts: one is the steady‐state response contributing to the stability of walking (or standing), and the other is the transient response contributing to the speed of walking.

Details

Industrial Robot: An International Journal, vol. 36 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 June 2020

Robert Bogue

This paper aims to provide technical details of humanoid robot developments from the 1970s to the present day and to consider their potential applications and prospects.

Abstract

Purpose

This paper aims to provide technical details of humanoid robot developments from the 1970s to the present day and to consider their potential applications and prospects.

Design/methodology/approach

Following an introduction, this first identifies the motivations for developing humanoid robots. It then provides a technical review of developments conducted between the 1970s and the late 2010s. The most recent developments and their applications are then discussed and the paper concludes with a brief consideration of future prospects.

Findings

Since the first efforts to develop humanoid robots in Japan, the 1970s, the technology has attracted global interest and progress has been dramatic. Enabled by developments in computing, imaging, sensing, power sources, actuators and other technologies, today’s humanoid robots are agile, stable and capable of all manner of human-like capabilities such as running, climbing stairs and carrying heavy loads. Real-world uses in fields such as construction, assembly, disaster response and home assistance are expected to emerge in the near future as a result of application-specific developments.

Originality/value

This illustrates the technological evolution of humanoid robots from their inception in the 1970s to the present day.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2019

Priyadarshi Biplab Kumar, Dayal R. Parhi and Chinmaya Sahu

With enhanced use of humanoids in demanding sectors of industrial automation and smart manufacturing, navigation and path planning of humanoid forms have become the centre of…

Abstract

Purpose

With enhanced use of humanoids in demanding sectors of industrial automation and smart manufacturing, navigation and path planning of humanoid forms have become the centre of attraction for robotics practitioners. This paper aims to focus on the development and implementation of a hybrid intelligent methodology to generate an optimal path for humanoid robots using regression analysis, adaptive particle swarm optimization and adaptive ant colony optimization techniques.

Design/methodology/approach

Sensory information regarding obstacle distances are fed to the regression controller, and an interim turning angle is obtained as the initial output. Adaptive particle swarm optimization technique is used to tune the governing parameter of adaptive ant colony optimization technique. The final output is generated by using the initial output of regression controller and tuned parameter from adaptive particle swarm optimization as inputs to the adaptive ant colony optimization technique along with other regular inputs. The final turning angle calculated from the hybrid controller is subsequently used by the humanoids to negotiate with obstacles present in the environment.

Findings

As the current investigation deals with the navigational analysis of single as well as multiple humanoids, a Petri-Net model has been combined with the proposed hybrid controller to avoid inter-collision that may happen in navigation of multiple humanoids. The hybridized controller is tested in simulation and experimental platforms with comparison of navigational parameters. The results obtained from both the platforms are found to be in coherence with each other. Finally, an assessment of the current technique with other existing navigational model reveals a performance improvement.

Research limitations/implications

The proposed hybrid controller provides satisfactory results for navigational analysis of single as well as multiple humanoids. However, the developed hybrid scheme can also be attempted with use of other smart algorithms.

Practical implications

Humanoid navigation is the present talk of the town, as its use is widespread to multiple sectors such as industrial automation, medical assistance, manufacturing sectors and entertainment. It can also be used in space and defence applications.

Social implications

This approach towards path planning can be very much helpful for navigating multiple forms of humanoids to assist in daily life needs of older adults and can also be a friendly tool for children.

Originality/value

Humanoid navigation has always been tricky and challenging. In the current work, a novel hybrid methodology of navigational analysis has been proposed for single and multiple humanoid robots, which is rarely reported in the existing literature. The developed navigational plan is verified through testing in simulation and experimental platforms. The results obtained from both the platforms are assessed against each other in terms of selected navigational parameters with observation of minimal error limits and close agreement. Finally, the proposed hybrid scheme is also evaluated against other existing navigational models, and significant performance improvements have been observed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 March 2021

Dunhai Wang and Amit Sharma

Humanoid robot has similar shape and action characteristics as humans, and it can complete some basic tasks instead of humans without changing the human environment, which makes…

Abstract

Purpose

Humanoid robot has similar shape and action characteristics as humans, and it can complete some basic tasks instead of humans without changing the human environment, which makes humanoid robot become the best structure and help form for robot to provide services for human beings.

Design/methodology/approach

The mobile operation control of humanoid robot is generated by the walking movement of humanoid robot's feet, and the robot's hand and arm complete grasping and other operations together.

Findings

On the basis of humanoid robot, the integrated system of software and hardware based on the KM34Z256 humanoid robot is described first, and a series of kinematics discussion on its mobile operation is carried out.

Originality/value

The research based on this project shows that the target recognition and positioning method is not only accurate and of high energy but also can realize the mobile operation of humanoid robot.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 1000