Search results

1 – 10 of over 6000
Article
Publication date: 23 January 2020

Mehmet Burak Şenol

Real flight is cognitively demanding; accordingly, both indicators and display panel layout should be user-friendly to improve pilot-aircraft interaction. Poor pilot-interface

Abstract

Purpose

Real flight is cognitively demanding; accordingly, both indicators and display panel layout should be user-friendly to improve pilot-aircraft interaction. Poor pilot-interface interactions in aircrafts could result in accidents. Although a general reason of accidents is improper displays, relatively few studies were conducted on interfaces. This study aims to present an optimization model to create intuitively integrated user-friendly cockpit interfaces.

Design/methodology/approach

Subjectivity within most usability evaluation techniques could bring about interface design problems. A priori information about indicator’s possible locations may be available or unavailable. Thus different analytical approaches must be applied for modifications and new interface designs. Relative layout design (RLD) model was developed and used in new interface designs to optimize locations of indicators. This model was based on layout optimization and constructed in accordance with design requirements, ergonomic considerations with the pilot preferences. RLD model optimizes interface design by deploying indicators to the best locations to improve usability of display panel, pilot-aircraft interaction and flight safety.

Findings

Optimum interfaces for two problem instances were gathered by RLD model in 15.77 CPU(s) with 10 indicators and 542.51 CPU(s) with 19 indicators. A comparison between relative and existing cockpit interfaces reveals that locations of six navigation and four mechanical system indicators are different. The differences may stem from pilots’ preferences and relativity constraints. Both interfaces are more similar for the central part of the display panel. The objective function value of relative interface design (Opt: 527938) is far better than existing interface (737100). The RLD model improved usability of existing interface (28.61 per cent considering decrease in the objective function values from 737100 to 527938.

Practical implications

Future cockpit and new helicopter interface designs may involve RLD model as an alternative interface design tool. Furthermore, other layout optimization problems, e.g. circuit boards, microchips and engines, etc. could be handled in a more realistic manner by RLD model.

Originality/value

Originality and impact of this study related to development and employment of a new optimization model (RLD) on cockpit interface design for the first time. Engineering requirements, human factors, ergonomics and pilots’ preferences are simultaneously considered in the RLD model. The subjectivity within usability evaluation techniques could be diminished in this way. The contributions of RLD model to classical facility layout models are relativity constraints with the physical constrictions and ergonomic objective function weights. Novelty of this paper is the development and employment of a new optimization model (RLD) to locate indicators.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 March 2007

Rui Rocha, António Cunha, Joaquim Varandas and Jorge Dias

This paper aims to focus on cybernetic transportation systems (CTS) due to their effectiveness for solving mobility problems in cities. A new mobility concept is proposed which…

5375

Abstract

Purpose

This paper aims to focus on cybernetic transportation systems (CTS) due to their effectiveness for solving mobility problems in cities. A new mobility concept is proposed which allows to attain the same flexibility of the private passenger car but with much less nuisances. It is based on small semi‐autonomous electric vehicles, which may be used to complement mass public transportation, by providing passenger service for any location at any time.

Design/methodology/approach

A set of automatic guided vehicles for public transportation are described. Two different control paradigms of the fleet are compared: centralized vs distributed control.

Findings

The pros and cons of both control approaches are highlighted so as to support decisions about the configuration of a CTS for people transportation on public places.

Originality/value

The paper provides a new offer of transportation for people in short path cities downtown or public gardens, in order to move people based on sustainable and efficient public transportation systems.

Details

Industrial Robot: An International Journal, vol. 34 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 2 May 2006

Raja Parasuraman and Christopher Miller

A fundamental issue driving much of the current research is the design of the interface between humans and ROVs. Autonomous robots are sufficiently different from most computer…

Abstract

A fundamental issue driving much of the current research is the design of the interface between humans and ROVs. Autonomous robots are sufficiently different from most computer systems as to require new research and design principles (Adams & Skubic, 2005; Kiesler & Hinds, 2004). Previous work on coordination between humans and automated agents has revealed both benefits and costs of automation for system performance (Parasuraman & Riley, 1997). Automation is clearly essential for the operation of many complex human–machine systems. But in some circumstances automation can also lead to novel problems for operators. Automation can increase workload and training requirements, impair situation awareness and, when particular events co-occur in combination with poorly designed interfaces, lead to accidents (e.g., Degani, 2004; Parasuraman & Riley, 1997).

Details

Human Factors of Remotely Operated Vehicles
Type: Book
ISBN: 978-0-76231-247-4

Book part
Publication date: 2 May 2006

Olena Connor, Harry Pedersen, Nancy J. Cooke and Heather Pringle

The great success of unmanned aerial vehicles (UAVs) in performing near-real time tactical, reconnaissance, intelligence, surveillance and other various missions has attracted…

Abstract

The great success of unmanned aerial vehicles (UAVs) in performing near-real time tactical, reconnaissance, intelligence, surveillance and other various missions has attracted broad attention from military and civilian communities. A critical contribution to the increase and extension of UAV applications, resides in the separation of pilot and vehicle allowing the operator to avoid dangerous and harmful situations. However, this apparent benefit has the potential to lead to problems when the role of humans in remotely operating “unmanned” vehicles is not considered. Although, UAVs do not carry humans onboard, they do require human control and maintenance. To control UAVs, skilled and coordinated work of operators on the ground is required.

Details

Human Factors of Remotely Operated Vehicles
Type: Book
ISBN: 978-0-76231-247-4

Open Access
Article
Publication date: 3 April 2019

Edric John Cruz Nacpil, Rencheng Zheng, Tsutomu Kaizuka and Kimihiko Nakano

Two-handed automobile steering at low vehicle speeds may lead to reduced steering ability at large steering wheel angles and shoulder injury at high steering wheel rates (SWRs)…

1217

Abstract

Purpose

Two-handed automobile steering at low vehicle speeds may lead to reduced steering ability at large steering wheel angles and shoulder injury at high steering wheel rates (SWRs). As a first step toward solving these problems, this study aims, firstly, to design a surface electromyography (sEMG) controlled steering assistance interface that enables hands-free steering wheel rotation and, secondly, to validate the effect of this rotation on path-following accuracy.

Design/methodology/approach

A total of 24 drivers used biceps brachii sEMG signals to control the steering assistance interface at a maximized SWR in three driving simulator scenarios: U-turn, 90º turn and 45º turn. For comparison, the scenarios were repeated with a slower SWR and a game steering wheel in place of the steering assistance interface. The path-following accuracy of the steering assistance interface would be validated if it was at least comparable to that of the game steering wheel.

Findings

Overall, the steering assistance interface with a maximized SWR was comparable to a game steering wheel. For the U-turn, 90º turn and 45º turn, the sEMG-based human–machine interface (HMI) had median lateral errors of 0.55, 0.3 and 0.2 m, respectively, whereas the game steering wheel, respectively, had median lateral errors of 0.7, 0.4 and 0.3 m. The higher accuracy of the sEMG-based HMI was statistically significant in the case of the U-turn.

Originality/value

Although production automobiles do not use sEMG-based HMIs, and few studies have proposed sEMG controlled steering, the results of the current study warrant further development of a sEMG-based HMI for an actual automobile.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 12 July 2022

Zheng Xu, Yihai Fang, Nan Zheng and Hai L. Vu

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Abstract

Purpose

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Design/methodology/approach

The simulation environment is established by integrating virtual reality interface with a micro-simulation model. In the simulation, the vehicle autonomy is developed by a framework that integrates artificial neural networks and genetic algorithms. Human-subject experiments are carried, and participants are asked to virtually sit in the developed autonomous vehicle (AV) that allows for both human driving and autopilot functions within a mixed traffic environment.

Findings

Not surprisingly, the inconsistency is identified between two driving modes, in which the AV’s driving maneuver causes the cognitive bias and makes participants feel unsafe. Even though only a shallow portion of the cases that the AV ended up with an accident during the testing stage, participants still frequently intervened during the AV operation. On a similar note, even though the statistical results reflect that the AV drives under perceived high-risk conditions, rarely an actual crash can happen. This suggests that the classic safety surrogate measurement, e.g. time-to-collision, may require adjustment for the mixed traffic flow.

Research limitations/implications

Understanding the behavior of AVs and the behavioral difference between AVs and human drivers are important, where the developed platform is only the first effort to identify the critical scenarios where the AVs might fail to react.

Practical implications

This paper attempts to fill the existing research gap in preparing close-to-reality tools for AV experience and further understanding human behavior during high-level autonomous driving.

Social implications

This work aims to systematically analyze the inconsistency in driving patterns between manual and autopilot modes in various driving scenarios (i.e. multiple scenes and various traffic conditions) to facilitate user acceptance of AV technology.

Originality/value

A close-to-reality tool for AV experience and AV-related behavioral study. A systematic analysis in relation to the inconsistency in driving patterns between manual and autonomous driving. A foundation for identifying the critical scenarios where the AVs might fail to react.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 12 April 2023

Shaobo Liang and Linfeng Yu

As voice search has progressively become a new way of information acquisition and human–computer interaction, this paper aims to explore the users' voice search behavior in human

Abstract

Purpose

As voice search has progressively become a new way of information acquisition and human–computer interaction, this paper aims to explore the users' voice search behavior in humanvehicle interaction.

Design/methodology/approach

This study employed mixed research methods, including questionnaires and interviews. A total of 151 Amazon MTurk volunteers were recruited to complete a questionnaire based on their most recent and impressive voice search experience. After the questionnaire, this paper conducted an online interview with the participants.

Findings

This paper studied users' voice search behavior characteristics in the context of the humanvehicle interaction and analyzed the voice search content, search need, search motivation and user satisfaction. In addition, this paper studied the barriers and suggestions for voice search in humanvehicle interaction through a content analysis of the interviews.

Practical implications

This paper's analysis of users' barriers and suggestions has a specific reference value for optimizing the voice search interaction system and improving the service.

Originality/value

This study is exploratory research that seeks to identify users' voice search needs and tasks and investigate voice search satisfaction in humanvehicle interaction context.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Abstract

Details

Designing XR: A Rhetorical Design Perspective for the Ecology of Human+Computer Systems
Type: Book
ISBN: 978-1-80262-366-6

Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

1043

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Abstract

Details

Autonomous Driving
Type: Book
ISBN: 978-1-78714-834-5

1 – 10 of over 6000