Search results

1 – 10 of 121
Article
Publication date: 23 January 2020

Esa Halmetoja and Francisco Forns-Samso

The purpose of this paper is to evaluate six different graphical user interfaces (GUIs) for facilities operations using humanmachine interaction (HMI) theories.

Abstract

Purpose

The purpose of this paper is to evaluate six different graphical user interfaces (GUIs) for facilities operations using humanmachine interaction (HMI) theories.

Design/methodology/approach

The authors used a combined multi-functional method that includes a review of the theories behind HMI for GUIs as its first approach. Consequently, heuristic evaluations were conducted to identify usability problems in a professional context. Ultimately, thematic interviews were conducted with property managers and service staff to determine special needs for the interaction of humans and the built environment.

Findings

The heuristic evaluation revealed that not all the studied applications were complete when the study was done. The significant non-motivational factor was slowness, and a lighter application means the GUI is more comfortable and faster to use. The evaluators recommended not using actions that deviate from regular practice. Proper implementation of the GUI would make it easier and quicker to work on property maintenance and management. The thematic interviews concluded that the GUIs form an excellent solution that enables communication between the occupant, owner and service provider. Indoor conditions monitoring was seen as the most compelling use case for GUIs. Two-dimensional (2D) layouts are more demonstrative and faster than three-dimensional (3D) layouts for monitoring purposes.

Practical implications

The study provides an objective view of the strengths and weaknesses of specific types of GUI. So, it can help to select a suitable GUI for a particular environment. The 3D view is not seen as necessary for monitoring indoor conditions room by room or sending a service request. Many occupants’ services can be implemented without any particular layout. On the other hand, some advanced services were desired for the occupants, such as monitoring occupancy, making space reservations and people tracking. These aspects require a 2D layout at least. The building information model is seen as useful, especially when monitoring complex technical systems.

Originality/value

Earlier investigations have primarily concentrated on investigating human–computer interaction. The authors’ studied human–building interaction instead. The notable difference to previous efforts is that the authors considered the GUI as a medium with which to communicate with the built environment, and looked at its benefits for top-level processes, not for the user interface itself.

Details

Journal of Corporate Real Estate , vol. 22 no. 1
Type: Research Article
ISSN: 1463-001X

Keywords

Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for humanmachine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Article
Publication date: 24 June 2019

Muhammet Fatih Aslan, Akif Durdu, Kadir Sabancı and Kemal Erdogan

In this study, human activity with finite and specific ranking is modeled with finite state machine, and an application for human–robot interaction was realized. A robot arm was…

Abstract

Purpose

In this study, human activity with finite and specific ranking is modeled with finite state machine, and an application for human–robot interaction was realized. A robot arm was designed that makes specific movements. The purpose of this paper is to create a language associated to a complex task, which was then used to teach individuals by the robot that knows the language.

Design/methodology/approach

Although the complex task is known by the robot, it is not known by the human. When the application is started, the robot continuously checks the specific task performed by the human. To carry out the control, the human hand is tracked. For this, the image processing techniques and the particle filter (PF) based on the Bayesian tracking method are used. To determine the complex task performed by the human, the task is divided into a series of sub-tasks. To identify the sequence of the sub-tasks, a push-down automata that uses a context-free grammar language structure is developed. Depending on the correctness of the sequence of the sub-tasks performed by humans, the robot produces different outputs.

Findings

This application was carried out for 15 individuals. In total, 11 out of the 15 individuals completed the complex task correctly by following the different outputs.

Originality/value

This type of study is suitable for applications to improve human intelligence and to enable people to learn quickly. Also, the risky tasks of a person working in a production or assembly line can be controlled with such applications by the robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 September 2021

Juliano Endrigo Sordan, Pedro Carlos Oprime, Marcio Lopes Pimenta, Sérgio Luis da Silva and Mario Orestes Aguirre González

This paper aims to develop a conceptual framework of the implementation of the contact points (CPs) between Lean Six Sigma practices and Industry 4.0 technologies.

1509

Abstract

Purpose

This paper aims to develop a conceptual framework of the implementation of the contact points (CPs) between Lean Six Sigma practices and Industry 4.0 technologies.

Design/methodology/approach

A systematic literature review was carried out based on two samples. A first sample containing 78 articles was analyzed through bibliometric indicators. After that, a second sample of 33 articles was analyzed in-depth according to research questions.

Findings

The conceptual framework involves 13 CPs between Lean Six Sigma (LSS) practices and I4.0 technologies (what), going through the technical requirements needed (how), categorized as information technology (IT), automation and competence requirements, to finally present the main results reported in the literature (why).

Research limitations/implications

This paper presents an innovative perspective of interactions between digital technologies and LSS practices, expanding knowledge about Digital LSS. Such perspective gives emphasis to the importance of technical requirements, such as communication and connectivity protocols, network topology, machine-to-machine communication (M2M), humanmachine interfaces (HMI), as well as analytical and digital skills.

Practical implications

The managerial implications regarding the digitalization of LSS practices address the investments required for the acquisition and maintenance of cyber-physical systems (CPS). Moreover, there is a need for the development of skills so that operators can successfully use the new technologies in a context of continuous improvement.

Originality/value

This paper presents a conceptual framework covering 13 CPs between LSS practices and Industry 4.0 technologies, the technical requirements and the expected results. It is hoped that this framework can assist future research and operational excellence projects towards digitalization.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 11 October 2018

Pavel Zikmund, Miroslav Macík, Petr Dvořák and Zdeněk Míkovec

This paper aims to present a state-of-the-art review in various fields of interest, leading to a new concept of bio-inspired control of small aircraft. The main goal is to improve…

Abstract

Purpose

This paper aims to present a state-of-the-art review in various fields of interest, leading to a new concept of bio-inspired control of small aircraft. The main goal is to improve controllability and safety in flying at low speeds.

Design/methodology/approach

The review part of the paper gives an overview of artificial and natural flow sensors and haptic feedback actuators and applications. This background leads to a discussion part where the topics are synthesized and the trend in control of small aircraft is estimated.

Findings

The gap in recent aircraft control is identified in the pilot–aircraft interaction. A pilot’s sensory load is discussed and several recommendations for improved control system architecture are laid out in the paper.

Practical implications

The paper points out an opportunity for a following research of suggested bio-inspired aircraft control. The control is based on the artificial feeling of aerodynamic forces acting on a wing by means of haptic feedback.

Originality/value

The paper merges two research fields – aircraft control and humanmachine interaction. This combination reveals new possibilities of aircraft control.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 September 2007

S. Mekid, T. Schlegel, N. Aspragathos and R. Teti

This paper aims to define imminent and future key aspects in innovative production machines and systems but more specifically to focus on the automation and control aspects.

Abstract

Purpose

This paper aims to define imminent and future key aspects in innovative production machines and systems but more specifically to focus on the automation and control aspects.

Design/methodology/approach

The foresight analysis is based on the state‐of‐the‐art of current manufacturing technologies with a setup of key enabling features and a roadmap research.

Findings

The paper finds that more integration of current and future technology development is required to build a strong platform for various applications featured with interoperability, trust, security and protection. Autonomy and close collaboration aspects in machines remain as crucial targets for the near future. An immediate action is required on smart strategies for the design patterns and agents to enable intuitive components for high quality dynamic user interfaces. This will allow rapid configuration and adaptation to new manufacturing tasks with highly improved machine learning.

Originality/value

The paper describes the future of key aspects required to move the production, automation and control systems forward.

Details

Foresight, vol. 9 no. 5
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 15 February 2021

Wen Qi, Xiaorui Liu, Longbin Zhang, Lunan Wu, Wenchuan Zang and Hang Su

The purpose of this paper is to mainly center on the touchless interaction between humans and robots in the real world. The accuracy of hand pose identification and stable…

Abstract

Purpose

The purpose of this paper is to mainly center on the touchless interaction between humans and robots in the real world. The accuracy of hand pose identification and stable operation in a non-stationary environment is the main challenge, especially in multiple sensors conditions. To guarantee the human-machine interaction system’s performance with a high recognition rate and lower computational time, an adaptive sensor fusion labeling framework should be considered in surgery robot teleoperation.

Design/methodology/approach

In this paper, a hand pose estimation model is proposed consisting of automatic labeling and classified based on a deep convolutional neural networks (DCNN) structure. Subsequently, an adaptive sensor fusion methodology is proposed for hand pose estimation with two leap motions. The sensor fusion system is implemented to process depth data and electromyography signals capturing from Myo Armband and leap motion, respectively. The developed adaptive methodology can perform stable and continuous hand position estimation even when a single sensor is unable to detect a hand.

Findings

The proposed adaptive sensor fusion method is verified with various experiments in six degrees of freedom in space. The results showed that the clustering model acquires the highest clustering accuracy (96.31%) than other methods, which can be regarded as real gestures. Moreover, the DCNN classifier gets the highest performance (88.47% accuracy and lowest computational time) than other methods.

Originality/value

This study can provide theoretical and engineering guidance for hand pose recognition in surgery robot teleoperation and design a new deep learning model for accuracy enhancement.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 28 March 2022

Di Ao and Jialin Li

This study aims to propose a novel subjective assessment (SA) method for level 2 or level 2+ advanced driver assistance system (ADAS) with a customized case study in China.

Abstract

Purpose

This study aims to propose a novel subjective assessment (SA) method for level 2 or level 2+ advanced driver assistance system (ADAS) with a customized case study in China.

Design/methodology/approach

The proposed SA method contains six dimensions, including perception, driveability and stability, riding comfort, humanmachine interaction, driver workload and trustworthiness and exceptional operating case, respectively. And each dimension subordinates several subsections, which describe the corresponding details under this dimension.

Findings

Based on the proposed SA, a case study in China is conducted. Six drivers with different driving experiences are invited to give their subjective ratings for each subsection according to a predefined rating standard. The rating results show that the ADAS from Tesla outperforms the upcoming electric vehicle in most cases.

Originality/value

The proposed SA method is beneficial for the original equipment manufacturers developing related technologies in the future.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 14 April 2023

Jennifer Huh, Hye-Young Kim and Garim Lee

This study examines how the locus of agency of brands' artificial intelligence (AI)–powered voice assistants (VAs) could lead to brand loyalty through perceived control, flow and…

Abstract

Purpose

This study examines how the locus of agency of brands' artificial intelligence (AI)–powered voice assistants (VAs) could lead to brand loyalty through perceived control, flow and consumer happiness under the moderating influences of brand image and voice congruity.

Design/methodology/approach

This study conducted a 2 (locus of agency: high vs. low) by 2 (brand image-voice congruity: congruent vs. incongruent) between-subjects experimental design. MANOVA, ANOVA and structural equation modeling (SEM) were conducted to test the hypothesized model.

Findings

ANOVA results revealed that human-centric (vs. machine-centric) agency led to higher perceived control. The interaction effect was significant, indicating the importance of congruency between brand image and VAs' voices. SEM results confirmed that perceived control predicted brand loyalty fully mediated by flow experience and consumer happiness.

Originality/value

This study provides evidence that the positive technology paradigm could carve out a new path in existing literature on AI-powered devices by showing the potential of a smart device as a tool for improving consumer–brand relationships and enriching consumers' well-being.

Details

Journal of Research in Interactive Marketing, vol. 17 no. 5
Type: Research Article
ISSN: 2040-7122

Keywords

Article
Publication date: 25 March 2021

Karthik Kumar Santhanaraj, Ramya M.M. and Dinakaran D.

The rousing phenomenon of the ageing population is becoming a vital issue and demanding fulminant actions. Population ageing is a resultant of the enhanced health-care system…

873

Abstract

Purpose

The rousing phenomenon of the ageing population is becoming a vital issue and demanding fulminant actions. Population ageing is a resultant of the enhanced health-care system, groovy antibiotics, medications and economic well-being. Old age leads to copious amounts of ailments. Aged people, owing to their reduced mobility and enervating disabilities, tend to rely upon caretakers and/or nursing personnel. With the increasing vogue of nuclear families in the society, the elderly are at the risk of being unveiled to emotional, physical and fiscal insecurities in the years to come. Caring for those seniors will be an enormous undertaking.

Design/methodology/approach

There is a dire need for an intelligent assistive system to meet out the requirements of continuous holistic care and monitoring. Assistive robots and systems used for elderly care are studied. The design motivation for the robots, elderly–robot interaction capabilities and technology incorporated in the systems are examined meticulously.

Findings

From the survey, it is suggested that the subsystems of an assistive robot revamped for better humanmachine interactions will be a potential alternative to the human counterpart. Affirmable advancements in the robot design and interaction methodologies that would increase the holistic care and assistance for aged people are analyzed and listed.

Originality/value

This paper reviews the available assistive technologies and suggests a synergistic model that can be adopted for the caring of the elderly.

Details

Journal of Enabling Technologies, vol. 15 no. 1
Type: Research Article
ISSN: 2398-6263

Keywords

1 – 10 of 121