Search results

1 – 8 of 8
Article
Publication date: 9 January 2017

Dolors Corominas Coll, Joan Carles Ferrer-Comalat, Salvador Linares-Mustarós and Xavier Bertran

The purpose of this study is to present a detailed quantitative and qualitative fuzzy approach to the Allee effect that permits dealing with uncertainty.

Abstract

Purpose

The purpose of this study is to present a detailed quantitative and qualitative fuzzy approach to the Allee effect that permits dealing with uncertainty.

Design/methodology/approach

The Allee effect is related to those aspects of population dynamics that are connected with a decrease in individual fitness when the population size diminishes to very low levels. It allows to model the evolution of certain sectors or clusters which, due to their low population density, may have problems of survival. In uncertain environments, an estimate of the effect’s parameters can be performed in the form of fuzzy numbers, which means that this study is using the methodology of fuzzy arithmetic.

Findings

This study reveals that fuzziness changes the behavior of the set of solutions when the strong Allee effect is studied under uncertainty from the point of view of standard difference or generalization of the Hukuhara difference.

Originality/value

The value and originality of the work consists in offering a set of tools for studying the evolution of a group of firms subject to an Allee effect in uncertain environments.

Book part
Publication date: 23 June 2016

Ai Han, Yongmiao Hong, Shouyang Wang and Xin Yun

Modelling and forecasting interval-valued time series (ITS) have received increasing attention in statistics and econometrics. An interval-valued observation contains more…

Abstract

Modelling and forecasting interval-valued time series (ITS) have received increasing attention in statistics and econometrics. An interval-valued observation contains more information than a point-valued observation in the same time period. The previous literature has mainly considered modelling and forecasting a univariate ITS. However, few works attempt to model a vector process of ITS. In this paper, we propose an interval-valued vector autoregressive moving average (IVARMA) model to capture the cross-dependence dynamics within an ITS vector system. A minimum-distance estimation method is developed to estimate the parameters of an IVARMA model, and consistency, asymptotic normality and asymptotic efficiency of the proposed estimator are established. A two-stage minimum-distance estimator is shown to be asymptotically most efficient among the class of minimum-distance estimators. Simulation studies show that the two-stage estimator indeed outperforms other minimum-distance estimators for various data-generating processes considered.

Article
Publication date: 10 August 2021

İsmail Özcan and Sırma Zeynep Alparslan Gök

This paper deals with cooperative games whose characteristic functions are fuzzy intervals, i.e. the worth of a coalition is not a real number but a fuzzy interval. This means…

Abstract

Purpose

This paper deals with cooperative games whose characteristic functions are fuzzy intervals, i.e. the worth of a coalition is not a real number but a fuzzy interval. This means that one observes a lower and an upper bound of the considered coalitions. This is very important, for example, from a computational and algorithmic viewpoint. The authors notice that the approach is general, since the characteristic function fuzzy interval values may result from solving general optimization problems.

Design/methodology/approach

This paper deals with cooperative games whose characteristic functions are fuzzy intervals, i.e. the worth of a coalition is not a real number but a fuzzy interval. A situation in which a finite set of players can obtain certain fuzzy payoffs by cooperation can be described by a cooperative fuzzy interval game.

Findings

In this paper, the authors extend a class of solutions for cooperative games that all have some egalitarian flavour in the sense that they assign to every player some initial payoff and distribute the remainder of the worth v(N) of the grand coalition N equally among all players under fuzzy uncertainty.

Originality/value

In this paper, the authors extend a class of solutions for cooperative games that all have some egalitarian flavour in the sense that they assign to every player some initial payoff and distribute the remainder of the worth v(N) of the grand coalition N equally among all players under fuzzy uncertainty. Examples of such solutions are the centre-of-gravity of the imputation-set value, shortly denoted by CIS value, egalitarian non-separable contribution value, shortly denoted by ENSC value and the equal division solution. Further, the authors discuss a class of equal surplus sharing solutions consisting of all convex combinations of the CIS value, the ENSC value and the equal division solution. The authors provide several characterizations of this class of solutions on variable and fixed player set. Specifications of several properties characterize specific solutions in this class.

Details

Kybernetes, vol. 51 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 October 2018

Pei Liang, Junhua Hu, Yongmei Liu and Xiaohong Chen

This paper aims to solve the problem of public resource allocation among vulnerable groups by proposing a new method called uncertain α-coordination value based on uncertain…

Abstract

Purpose

This paper aims to solve the problem of public resource allocation among vulnerable groups by proposing a new method called uncertain α-coordination value based on uncertain cooperative game.

Design/methodology/approach

First, explicit forms of uncertain Shapley value with Chouqet integral form and uncertain centre-of-gravity of imputation-set (CIS) value are defined separately on the basis of uncertainty theory and cooperative game. Then, a convex combination of the two values above called the uncertain α-coordination value is used as the best solution. This study proves that the proposed methods meet the basic properties of cooperative game.

Findings

The uncertain α-coordination value is used to solve a public medical resource allocation problem in fuzzy coalitions and uncertain payoffs. Compared with other methods, the α-coordination value can solve such problem effectively because it balances the worries of vulnerable group’s further development and group fairness.

Originality/value

In this paper, an extension of classical cooperative game called uncertain cooperative game is proposed, in which players choose any level of participation in a game and relate uncertainty with the value of the game. A new function called uncertain α-Coordination value is proposed to allocate public resources amongst vulnerable groups in an uncertain environment, a topic that has not been explored yet. The definitions of uncertain Shapley value with Choquet integral form and uncertain CIS value are proposed separately to establish uncertain α-Coordination value.

Details

Kybernetes, vol. 48 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 April 2018

Diptiranjan Behera, Hong-Zhong Huang and Smita Tapaswini

Recently, fractional differential equations have been used to model various physical and engineering problems. One may need a reliable and efficient numerical technique for the…

Abstract

Purpose

Recently, fractional differential equations have been used to model various physical and engineering problems. One may need a reliable and efficient numerical technique for the solution of these types of differential equations, as sometimes it is not easy to get the analytical solution. However, in general, in the existing investigations, involved parameters and variables are defined exactly, whereas in actual practice it may contain uncertainty because of error in observations, maintenance induced error, etc. Therefore, the purpose of this paper is to find the dynamic response of fractionally damped beam approximately under fuzzy and interval uncertainty.

Design/methodology/approach

Here, a semi analytical approach, variational iteration method (VIM), has been considered for the solution. A newly developed form of fuzzy numbers known as double parametric form has been applied to model the uncertainty involved in the system parameters and variables.

Findings

VIM has been successfully implemented along with double parametric form of fuzzy number to find the uncertain dynamic responses of the fractionally damped beam. The advantage of this approach is that the solution can be written in power series or compact form. Also, this method converges rapidly to have the accurate solution. The uncertain responses subject to impulse and step loads have also been computed and the behaviours of the responses are analysed. Applying the double parametric form, it reduces the computational cost without separating the fuzzy equation into coupled differential equations as done in traditional approaches.

Originality/value

Uncertain dynamic responses of fuzzy fractionally damped beam using the newly developed double parametric form of fuzzy numbers subject to unit step and impulse loads have been obtained. Gaussian fuzzy numbers are used to model the uncertainties. In the methodology using the alpha cut form, corresponding beam equation is first converted to an interval-based fuzzy equation. Next, it has been transformed to crisp form by applying double parametric form of fuzzy numbers. Finally, VIM has been applied to solve the same for the general fuzzy responses. Various numerical examples have been taken in to consideration.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2004

D. Dutta Majumder and Kausik Kumar Majumdar

In this paper, we present a brief study on various paradigms to tackle complexity or in other words manage uncertainty in the context of understanding science, society and nature…

1083

Abstract

In this paper, we present a brief study on various paradigms to tackle complexity or in other words manage uncertainty in the context of understanding science, society and nature. Fuzzy real numbers, fuzzy logic, possibility theory, probability theory, Dempster‐Shafer theory, artificial neural nets, neuro‐fuzzy, fractals and multifractals, etc. are some of the paradigms to help us to understand complex systems. We present a very detailed discussion on the mathematical theory of fuzzy dynamical system (FDS), which is the most fundamental theory from the point of view of evolution of any fuzzy system. We have made considerable extension of FDS in this paper, which has great practical value in studying some of the very complex systems in society and nature. The theories of fuzzy controllers, fuzzy pattern recognition and fuzzy computer vision are but some of the most prominent subclasses of FDS. We enunciate the concept of fuzzy differential inclusion (not equation) and fuzzy attractor. We attempt to present this theoretical framework to give an interpretation of cyclogenesis in atmospheric cybernetics as a case study. We also have presented a Dempster‐Shafer's evidence theoretic analysis and a classical probability theoretic analysis (from general system theoretic outlook) of carcinogenesis as other interesting case studies of bio‐cybernetics.

Details

Kybernetes, vol. 33 no. 7
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 June 2018

Perumandla Karunakar and Snehashish Chakraverty

This paper aims to present solutions of uncertain linear and non-linear shallow water wave equations. The uncertainty has been taken as interval and one-dimensional interval…

209

Abstract

Purpose

This paper aims to present solutions of uncertain linear and non-linear shallow water wave equations. The uncertainty has been taken as interval and one-dimensional interval shallow water wave equations have been solved by homotopy perturbation method (HPM). In this study, basin depth and initial conditions have been taken as interval and the single parametric concept has been used to handle the interval uncertainty.

Design/methodology/approach

HPM has been used to solve interval shallow water wave equation with the help of single parametric concept.

Findings

Previously, few authors found solution of shallow water wave equations with crisp basin depth and initial conditions. But, in actual sense, the basin depth, as well as initial conditions, may not be found in crisp form. As such, here these are considered as uncertain in term of intervals. Hence, interval linear and non-linear shallow water wave equations are solved in this study using single parametric concept-based HPM.

Originality/value

As mentioned above, uncertainty is must in the above-titled problems due to the various parametrics involved in the governing differential equations. These uncertain parametric values may be considered as interval. To the best of the authors’ knowledge, no work has been reported on the solution of uncertain shallow water wave equations. But when the interval uncertainty is involved in the above differential equation, then direct methods are not available. Accordingly, single parametric concept-based HPM has been applied in this study to handle the said problems.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 September 2022

Mustafa Turkyilmazoglu

The classical integer derivative diffusionmodels for fluid flow within a channel of parallel walls, for heat transfer within a rectangular fin and for impulsive acceleration of a…

Abstract

Purpose

The classical integer derivative diffusionmodels for fluid flow within a channel of parallel walls, for heat transfer within a rectangular fin and for impulsive acceleration of a quiescent Newtonian fluid within a circular pipe are initially generalized by introducing fractional derivatives. The purpose of this paper is to represent solutions as steady and transient parts. Afterward, making use of separation of variables, a fractional Sturm–Liouville eigenvalue task is posed whose eigenvalues and eigenfunctions enable us to write down the transient solution in the Fourier series involving also Mittag–Leffler function. An alternative solution based on the Laplace transform method is also provided.

Design/methodology/approach

In this work, an analytical formulation is presented concerning the transient and passage to steady state in fluid flow and heat transfer within the diffusion fractional models.

Findings

From the closed-form solutions, it is clear to visualize the start-up process of physical diffusion phenomena in fractional order models. In particular, impacts of fractional derivative in different time regimes are clarified, namely, the early time zone of acceleration, the transition zone and the late time regime of deceleration.

Originality/value

With the newly developing field of fractional calculus, the classical heat and mass transfer analysis has been modified to account for the fractional order derivative concept.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 8 of 8