Search results

1 – 10 of 195
Article
Publication date: 1 August 1996

Ales Svoboda, Hans‐Åke Häggblad and Mats Näsström

Presents a finite element formulation of hot isostatic pressing (HIP) based on a continuum approach using thermal‐elastoviscoplastic constitutive equations with compressibility…

Abstract

Presents a finite element formulation of hot isostatic pressing (HIP) based on a continuum approach using thermal‐elastoviscoplastic constitutive equations with compressibility. The formulation takes into consideration dependence of the viscoplastic part on the porosity. Also takes into account the thermomechanical response, including nonlinear effects in both the thermal and mechanical analyses. Implements the material model in an implicit finite element code. Presents experimental procedures for evaluating the inelastic behaviour of metal powders during densification and experimental data. Chooses the simulation of the dilatometer measurement of a cylindrical component during HIP and manufacturing simulation of a turbine component to near net shape (NNS) as a demonstrator example. Both components are made of a hot isostatically pressed hot‐working martensitic steel. Compares the result of the simulation in the form of the final geometry of the container with the geometry of a real component produced by HIP. Makes a comparison between the calculated and measured deformations during the HIP process for the cylindrical component. Measures the final geometry of the turbine component by means of a computer controlled measuring machine (CMM). Performs the complete process from design and simulation to geometry verification within a computer‐aided concurrent engineering (CACE) system.

Details

Engineering Computations, vol. 13 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 December 2023

Yuting Lv, Yaojie Liu, Rui Wang, Hongyao Yu, Zhongnan Bi, Guohao Liu and Guangbao Sun

This paper aims to design a novel TiC/GTD222 nickel-based high-temperature alloy with excellent hot corrosion resistance by incorporating appropriate amounts of C, Al and Ti…

Abstract

Purpose

This paper aims to design a novel TiC/GTD222 nickel-based high-temperature alloy with excellent hot corrosion resistance by incorporating appropriate amounts of C, Al and Ti elements into GTD222 alloy.

Design/methodology/approach

The composite material was prepared using the selective laser melting (SLM) technology, followed by a hot isostatic pressing (HIP) treatment. Subsequently, the composite underwent a hot corrosion test in a 75% Na2SO4 + 25% NaCl mixed salt environment at 900 °C.

Findings

The HIP-SLMed TiC/GTD222 composite exhibits a relatively low weight loss rate. First, the addition of alloying elements facilitates the formation of multiple protective oxide films rich in Al, Ti and Cr. These oxide films play a crucial role in enhancing the material’s resistance to hot corrosion. Second, the HIP treatment results in a reduction of grain size in the composite and an increased number of grain boundaries, which further promote the formation of protective films.

Originality/value

The hot corrosion behavior of the TiC/GTD222 nickel-based composite material prepared through SLM and HIP processing has not been previously studied. This research provides a new approach for designing nickel-based superalloys with excellent hot corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 June 2017

Hany Hassanin, Khamis Essa, Chunlei Qiu, Ali M. Abdelhafeez, Nicholas J.E. Adkins and Moataz M. Attallah

The purpose of this study is to develop a manufacturing technology using hybrid selective laser melting/hot isostatic pressing (SLM/HIP) process to produce full density net-shape…

734

Abstract

Purpose

The purpose of this study is to develop a manufacturing technology using hybrid selective laser melting/hot isostatic pressing (SLM/HIP) process to produce full density net-shape components more rapidly and at lower cost than processing by SLM alone.

Design/methodology/approach

Ti-6Al-4V powder was encapsulated in situ by the production of as-SLMed shell prior to the HIP process. After HIPping, the SLM shell is an integral part of the final component. Finite element (FE) modelling based on pure plasticity theory of porous metal coupled with an iterative procedure has been adopted to simulate HIPping of the encapsulated Ti-6Al-4V powder and SLMed shell. Two demonstrator parts have been modelled, designed, produced and experimentally validated. Geometrical analysis and microstructural characterisation have been carried out to demonstrate the efficiency of the process.

Findings

The FE model is in agreement with the measured data obtained and confirms that the design of the shell affects the resulting deformed parts. In addition, the scanning electron microscope (SEM) and Electron backscatter diffraction EBSD (EBSD) of the interior and exterior parts reveal a considerably different grain structure and crystallographic orientation with a good bonding between the SLMed shell and HIPped powder.

Originality/value

An approach to improve SLM productivity by combining it with HIP is developed to further innovate the advanced manufacturing field. The possibility of the hybrid SLS/HIP supported by FEA simulation as a net shape manufacturing process for fabrication of high performance parts has been demonstrated.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 June 2021

Mustafa Safa Yılmaz, Gökhan Özer, Zafer Çağatay Öter and Onur Ertuğrul

This paper aims to investigate the effects of various heat treatments on microstructure, hardness, porosity and corrosion properties of the parts.

Abstract

Purpose

This paper aims to investigate the effects of various heat treatments on microstructure, hardness, porosity and corrosion properties of the parts.

Design/methodology/approach

Hot isostatic pressing (HIP) process, various heat treatments and their combinations were applied to the AlSi10Mg parts produced by direct laser metal sintering (DMLS).

Findings

It has been found that the HIP process, which is a post-processing process, reduces the amount of porosity in DMLS-AlSi10Mg material, thus improves corrosion resistance significantly.

Originality/value

In this study, the HIP process and subsequent T6 heat treatments were applied to AlSi10Mg parts produced by the DMLS technique. The study aims to increase the corrosion resistance of AlSi10Mg parts by reducing porosity with the HIP process and by altering the microstructure with the T6 process.

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2016

Jan Patrick Deckers, Khuram Shahzad, Ludwig Cardon, Marleen Rombouts, Jozef Vleugels and Jean-Pierre Kruth

The purpose of this paper is to compare different powder metallurgy (PM) processes to produce ceramic parts through additive manufacturing (AM). This creates the potential to…

Abstract

Purpose

The purpose of this paper is to compare different powder metallurgy (PM) processes to produce ceramic parts through additive manufacturing (AM). This creates the potential to rapidly shape ceramic parts with an almost unlimited shape freedom. In this paper, alumina (Al2O3) parts are produced, as Al2O3 is currently the most commonly used ceramic material for technical applications.

Design/methodology/approach

Variants of the following PM route, with indirect selective laser sintering (indirect SLS) as the AM shaping step, are explored to produce ceramic parts: powder synthesis, indirect SLS, binder removal and furnace sintering and alternative densification steps.

Findings

Freeform-shaped Al2O3 parts with densities up to approximately 90 per cent are obtained.

Research limitations/implications

The resulting Al2O3 parts contain inter-agglomerate pores. To produce higher-quality ceramic parts through indirect SLS, these pores should be avoided or eliminated.

Originality/value

The research is innovative in many ways. First, composite powders are produced using different powder production methods, such as temperature-induced phase separation and dispersion polymerization. Second, four different binder materials are investigated: polyamide (nylon-12), polystyrene, polypropylene and a carnauba wax – low-density polyethylene combination. Further, to produce ceramic parts with increased density, the following densification techniques are investigated as additional steps of the PM process: laser remelting, isostatic pressing and infiltration.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 1995

G. Bergman, M. Oldenburg and P. Jeppsson

A database for finite element models and related data is developed andincorporated into a prototype system for integration of non‐linearfinite element codes with a product design…

Abstract

A database for finite element models and related data is developed and incorporated into a prototype system for integration of non‐linear finite element codes with a product design system. In the prototype system, the database is used as a link for integrating commercial, public domain as well as in‐house codes. In the present system, the public domain finite element codes NIKE2D, NIKE3D, DYNA2D, DYNA3D and TOPAZ2D are integrated with the CIM–system I–DEAS. The prototype system is primarily intended as a platform in research projects for development of integrated environments tuned for simulations of specific manufacturing processes such as quenching, welding, hot rolling, metal powder compaction and hot isostatic pressing.

Details

Engineering Computations, vol. 12 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1998

Suman Das, Joseph J. Beama, Martin Wohlert and David L. Bourell

This paper focuses on recent advances in direct freeform fabrication of high performance components via selective laser sintering (SLS). The application, known as SLS/HIP, is a…

2942

Abstract

This paper focuses on recent advances in direct freeform fabrication of high performance components via selective laser sintering (SLS). The application, known as SLS/HIP, is a low cost manufacturing technique that combines the strengths of selective laser sintering and hot isostatic pressing (HIP) to rapidly produce low volume or “one of a kind” high performance metal components. Direct selective laser sintering is a rapid manufacturing technique that can produce high density metal parts of complex geometry with an integral, gas impermeable skin. These parts can then be directly post‐processed by containerless HIP. The advantages of in situ encapsulation include elimination of a secondary container material and associated container‐powder interaction, reduced pre‐processing time, a short HIP cycle and reduction in post‐processing steps compared to HIP of canned parts. SLS/HIP is currently being developed under a DARPA/ONR program for INCONEL® 625 superalloy and Ti‐6Al‐4V, the demonstration components being the F‐14 turbine engine vane and the AIM‐9 missile guidance section housing base respectively.

Details

Rapid Prototyping Journal, vol. 4 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 September 2011

P. Naik, M. Ibrahim, A. Surendranathan and M. Mujeebu

This paper presents the synthesizing of carbon-carbon (CC) composites by preformed yarn (PY) method, by varying the percentage of carbon fiber volume. The PY used is carbon fiber…

Abstract

This paper presents the synthesizing of carbon-carbon (CC) composites by preformed yarn (PY) method, by varying the percentage of carbon fiber volume. The PY used is carbon fiber bundle surrounded by coke and pitch which is enclosed in nylon-6. Three types of samples with fiber weight fractions of 30%, 40% and 50% respectively, are fabricated and tested. In each case, the PY is chopped and filled into a die of required shape and hot pressed at 600°C to get the carbonized composite. To obtain the graphitic structure, the specimen is heat treated at 1800°C followed by soaking for two hours. Further, one cycle pitch impregnation is done by hot isostatic pressing, to eliminate the voids. The characteristics such as hardness, compressive strength, creep, density and oxidation resistance are studied. It is observed that, as the carbon fiber percentage increases the properties also improved, provided sintering is done at fairly higher temperatures. The superiority of the new class of CC composites made by the proposed PY technique over those obtained by the conventional methods is also demonstrated.

Details

World Journal of Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 195