Search results

1 – 10 of 389
Article
Publication date: 15 June 2015

Jiaru Shao, Shangming Li, Zirui Li and Moubin Liu

The purpose of this paper is to investigate different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation and to find out the optimal…

Abstract

Purpose

The purpose of this paper is to investigate different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation and to find out the optimal selection of sloshing mitigation for practical applications.

Design/methodology/approach

The numerical study is conducted by using a proven improved smoothed particle hydrodynamics (SPH), which is convenient in tracking free surfaces and capable of obtaining smooth and correct pressure field.

Findings

Liquid sloshing effects in a rectangular tank with vertical middle baffles, horizontal baffles, T-shape baffles and porous baffles are investigated together with those without any baffles. It is found that the existence of baffles can mitigate sloshing effects and the mitigation performance depends on the shape, structure and location of the baffles. Considering the balance of sloshing mitigation performance and the complexity in structure and design, the I shaped and T shaped baffles can be good choices to mitigate sloshing effects.

Practical implications

The presented methodology and findings can be helpful in practical engineering applications, especially in ocean engineering and problems with large sloshing effects.

Originality/value

The SPH method is a meshfree, Lagrangian particle method, and therefore it is an attractive approach for modeling liquid sloshing with material interfaces, free surfaces and moving boundaries. In most previous literature, only simple baffles are investigated. In this paper, more complicated baffles are investigated, which can be helpful in practical applications and engineering designs.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1995

Mary C. Ho and B. Ramaswamy

The quality of crystals grown from melt depends on the flow field in themelt. To simulate melt conditions, a finite element analysis is performed onflow in a heated cavity under…

Abstract

The quality of crystals grown from melt depends on the flow field in the melt. To simulate melt conditions, a finite element analysis is performed on flow in a heated cavity under the driving forces of natural convection, thermocapillary effects and rotation. In addition, the gravity field is modulated to simulate a microgravitational environment. The purpose for conducting this research is to determine whether the use of baffles can effectively reduce convection and suppress temperature oscillations. The results show that the baffle is able to suppress convection and reduce the amplitude of the temperature oscillations when placed perpendicular to the modulation direction. Under crystal and crucible rotation, the results with and without baffles are similar. In all cases, baffles did not induce temperature oscillations. From this study, it can be concluded that the effects of baffles on the flow behaviour depends greatly on the direction of gravity modulation and frequency.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 October 2020

Hangduo Gao, Zhao Yin, Jun Liu, Quansheng Zang and Gao Lin

The purpose of this paper is to analyze the liquid sloshing behaviors in two-dimensional tanks with various porous baffles under the external excitation.

Abstract

Purpose

The purpose of this paper is to analyze the liquid sloshing behaviors in two-dimensional tanks with various porous baffles under the external excitation.

Design/methodology/approach

Adopting the finite element method (FEM) and control variable method to study the impacts of the height, length, number, location, shape, porous-effect parameter of the porous baffle, the external load frequency and the shape of the tank on the liquid sloshing response.

Findings

The amplitude of the free surface can be reduced effectively when the baffle opening is appropriate. The anti-sway ability of the system increases in pace with the baffle’s height growing. Under the same conditions, the shapes of the baffles have an important effect on improving the anti-sway ability of the system.

Originality/value

As there exist the differences of the velocity potential between each side of the porous baffle, which means that there are two different velocity potentials at a point on the porous baffle, the conventional finite element modeling technologies are not suitable to be applied here. To deal with this problem, the points on the porous baffle are regarded as two nodes with the same coordinate to model and calculate.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 June 2023

Sara Armou, Mustapha Ait Hssain, Soufiane Nouari, Rachid Mir and Kaoutar Zine-Dine

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled

Abstract

Purpose

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled horizontal channel, using a Cu-H2O nanofluid under mixed convection and laminar flow.

Design/methodology/approach

The mathematical model is two-dimensional and comprises a system of four governing equations, such as the conservation of continuity, momentum and energy. To obtain numerical solutions for these equations, the finite volume method was used for discretization. A validation process was performed by comparing this study’s results with those of previously published studies. The comparison revealed a close agreement. The numerical study was performed for a wide range of key parameters: The baffle height (0 ≤ h ≤ 0.7), the spacing distance between baffle and blocks (0.25 ≤ w ≤ 3), the Grashof and Reynolds numbers are kept equal to 104 and 75, respectively, the channel aspect ratio is L/H = 10, and the volume fraction of Cu nanoparticles is fixed at φ = 5%.

Findings

The results of the study reveal a significant improvement in heat transfer in terms of total Nusselt number of the top and bottom hot components, which exhibited an improvement of 16.89% and 17.23% when the baffle height increases from h = 0 to h = 0.7. Additionally, the study found that reducing the distance between the baffle and the electronic components up to a certain limit can improve the heat transfer rate. Therefore, the optimal height of the baffle was found to be no lower than 0.6, and the recommended distance between the heaters and the baffle was 0.5.

Originality/value

This study provides valuable insights into the optimization of the design of baffled channels for improved heat transfer performance. The findings of study can be used to improve heat exchangers and cooling systems in various applications. The use of Cu-H2O nanofluid under mixed convection and laminar flow conditions in channel with baffle and electronic components is also unique, making this study an original contribution to the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 March 2021

Harun Zontul, Hudhaifa Hamzah and Besir Sahin

This paper aims to exhibit a numerical study to analyze the influence of a periodic magnetic source on free convection flow and entropy generation of a ferrofluid in a baffled

Abstract

Purpose

This paper aims to exhibit a numerical study to analyze the influence of a periodic magnetic source on free convection flow and entropy generation of a ferrofluid in a baffled cavity. In this study, ferrofluid nanofluid was selected due to its ability to image magnetic domain structures within the cavity. The non-uniform magnetic source is considered as a sinusoidal distribution in the vertical direction.

Design/methodology/approach

The finite volume technique is used to evaluate the steady two-dimensional partial differential equations that govern the flow with its corresponding boundary conditions.

Findings

The obtained results indicate that a significant increase in the average Nusselt number can be achieved with the use of the periodic magnetic source instead of a uniform case. In addition, the effectiveness of the adiabatic baffle notably depends on its position and Rayleigh number. Regardless of the values of period and Hartmann numbers, the periodic magnetic source has a higher entropy generation and lower Bejan number than the uniform magnetic source.

Originality/value

The novelty of this research lies in applying a periodic magnetic source on the natural convection of ferrofluids in a baffled cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2019

Mohammad Mohsen Peiravi, Javad Alinejad, D.D. Ganji and Soroush Maddah

The purpose of this study is investigating the effect of using multi-phase nanofluids, Rayleigh number and baffle arrangement simultaneously on the heat transfer rate and Predict…

Abstract

Purpose

The purpose of this study is investigating the effect of using multi-phase nanofluids, Rayleigh number and baffle arrangement simultaneously on the heat transfer rate and Predict the optimal arrangement type of baffles in the differentiation of Rayleigh number in a 3D enclosure.

Design/methodology/approach

Simulations were performed on the base of the L25 Taguchi orthogonal array, and each test was conducted under different height and baffle arrangement. The multi-phase thermal lattice Boltzmann based on the D3Q19 method was used for modeling fluid flow and temperature fields.

Findings

Streamlines, isotherms, nanofluid volume fraction distribution and Nusselt number along the wall surface for 104 < Ra < 108 have been demonstrated. Signal-to-noise ratios have been analyzed to predict optimal conditions of maximize and minimize the heat transfer rate. The results show that by choosing the appropriate height and arrangement of the baffles, the average Nusselt number can be changed by more than 57 per cent.

Originality/value

The value of this paper is surveying three-dimensional and two-phase simulation for nanofluid. Also using the Taguchi method for Predicting the optimal arrangement type of baffles in a multi-part enclosure. Finally statistical analysis of the results by using of two maximum and minimum target Function heat transfer rates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Minh Tuan Nguyen, Abdelraheem M. Aly and Sang-Wook Lee

This paper aims to conduct numerical simulations of unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies and different boundary conditions using the…

Abstract

Purpose

This paper aims to conduct numerical simulations of unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies and different boundary conditions using the incompressible smoothed particle hydrodynamics (ISPH) method.

Design/methodology/approach

In the ISPH method, the pressure evaluation is stabilized by including both of divergence of velocity and density invariance in solving pressure Poisson equation. The authors prevented the particles anisotropic distributions by using the shifting technique.

Findings

The proposed ISPH method exhibited good performance in natural/mixed convection in a cavity with fixed, moving and free-falling rigid body. In natural convection, the authors investigated the effects of an inner sloshing baffle as well as fixed and moving circular cylinders on the heat transfer and fluid flow. The heated baffle has higher effects on the heat transfer rate compared to a cooled baffle. In the mixed convection, a free-falling circular cylinder over a free surface cavity and heat transfer in the presence of a circular cylinder in a lid-driven cavity are simulated. Fixed or moving rigid body in a cavity results in considerable effects on the heat transfer rate and fluid flow.

Originality/value

The authors conducted numerical simulations of unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies and different boundary conditions using the ISPH method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2018

Soheil Bazazzadeh, Arman Shojaei, Mirco Zaccariotto and Ugo Galvanetto

The purpose of this paper is to apply the Peridynamic differential operator (PDDO) to incompressible inviscid fluid flow with moving boundaries. Based on the potential flow…

Abstract

Purpose

The purpose of this paper is to apply the Peridynamic differential operator (PDDO) to incompressible inviscid fluid flow with moving boundaries. Based on the potential flow theory, a Lagrangian formulation is used to cope with non-linear free-surface waves of sloshing water in 2D and 3D rectangular and square tanks.

Design/methodology/approach

In fact, PDDO recasts the local differentiation operator through a nonlocal integration scheme. This makes the method capable of determining the derivatives of a field variable, more precisely than direct differentiation, when jump discontinuities or gradient singularities come into the picture. The issue of gradient singularity can be found in tanks containing vertical/horizontal baffles.

Findings

The application of PDDO helps to obtain the velocity field with a high accuracy at each time step that leads to a suitable geometry updating for the procedure. Domain/boundary nodes are updated by using a second-order finite difference time algorithm. The method is applied to the solution of different examples including tanks with baffles. The accuracy of the method is scrutinized by comparing the numerical results with analytical, numerical and experimental results available in the literature.

Originality/value

Based on the investigations, PDDO can be considered a reliable and suitable approach to cope with sloshing problems in tanks. The paper paves the way to apply the method for a wider range of problems such as compressible fluid flow.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1937

In an aircraft having a cowled air‐cooled engine arranged behind the airscrew with its crankshaft longitudinally of the aircraft and a passage in the. interior of a wing which…

Abstract

In an aircraft having a cowled air‐cooled engine arranged behind the airscrew with its crankshaft longitudinally of the aircraft and a passage in the. interior of a wing which merges into the cowling, the whole of the cooling air which has passed through the cowling is transmitted to an outlet adjacent the trailing edge of the wing. An engine 11 is mounted on a wing 12 and is surrounded by an annular cowling 13 which is faired into the wing and its rear end is connected to an outlet opening 14 provided in the trailing edge of the wing and controlled by a pivoted flap 15 which may constitute an air‐brake. In a modification, the rear end of the cowling is directly connected to the leading edges of the wings, the air being discharged between the trailing edge of the wing and the ailerons 18. In a still further modification, a fifteen‐cylinder engine of star form with the cylinders arranged in lines of three is housed in the wing 12, the air‐inlet being through horizontal slots. Internal baffles are provided.

Details

Aircraft Engineering and Aerospace Technology, vol. 9 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 10 December 2018

Taher Armaghani, A.M. Rashad, Omid Vahidifar, S.R. Mishra and A.J. Chamkha

This paper aims to concentrate on the impacts of a discrete heat source location on heat transfer and entropy generation for a Ag-water nanofluid in an open inclined L-shaped…

Abstract

Purpose

This paper aims to concentrate on the impacts of a discrete heat source location on heat transfer and entropy generation for a Ag-water nanofluid in an open inclined L-shaped cavity.

Design/methodology/approach

The governing partial differential equations for this study are computed by the finite volume method.

Findings

The results show that increasing the inclination angle leads to a rise in heat transfer. It is clear with the increase in the nanoparticles volume fraction that the thermal performance reduces, and it increases when the inclination angle increases.

Originality/value

Because of the continuous literature survey, the authors have not found a study that concentrates on the entropy generation in a wide variety of irregular ducts. Thus, in this paper, they present the analysis of entropy generation in an L-shaped duct experiencing a mixed convective flow with a nanofluid. The authors deal with this geometry because it is very useful in cooling systems of nuclear and chemical reactors and electronic components.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 389