Search results

1 – 10 of 18
Article
Publication date: 23 April 2018

Siddharth Suhas Kulkarni, Craig Chapman, Hanifa Shah and David John Edwards

The purpose of this paper is to conduct a comparative analysis between a straight blade (SB) and a curved caudal-fin tidal turbine blade (CB) and to examine the aspects relating…

Abstract

Purpose

The purpose of this paper is to conduct a comparative analysis between a straight blade (SB) and a curved caudal-fin tidal turbine blade (CB) and to examine the aspects relating to geometry, turbulence modelling, non-dimensional forces lift and power coefficients.

Design/methodology/approach

The comparison utilises results obtained from a default horizontal axis tidal turbine with turbine models available from the literature. A computational design method was then developed and implemented for “horizontal axis tidal turbine blade”. Computational fluid dynamics (CFD) results for the blade design are presented in terms of lift coefficient distribution at mid-height blades, power coefficients and blade surface pressure distributions. Moving the CB back towards the SB ensures that the total blade height stays constant for all geometries. A 3D mesh independency study of a “straight blade horizontal axis tidal turbine blade” modelled using CFD was carried out. The grid convergence study was produced by employing two turbulence models, the standard k-ε model and shear stress transport (SST) in ANSYS CFX. Three parameters were investigated: mesh resolution, turbulence model, and power coefficient in the initial CFD, analysis.

Findings

It was found that the mesh resolution and the turbulence model affect the power coefficient results. The power coefficients obtained from the standard k-ε model are 15 to 20 per cent lower than the accuracy of the SST model. Further analysis was performed on both the designed blades using ANSYS CFX and SST turbulence model. The variation in pressure distributions yields to the varying lift coefficient distribution across blade spans. The lift coefficient reached its peak between 0.75 and 0.8 of the blade span where the total lift accelerates with increasing pressure before drastically dropping down at 0.9 onwards due to the escalating rotational velocity of the blades.

Originality/value

The work presents a computational design methodological approach that is entirely original. While this numerical method has proven to be accurate and robust for many traditional tidal turbines, it has now been verified further for CB tidal turbines.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 February 2018

Siddharth Kulkarni, Craig Chapman, Hanifa Shah, Erika Anneli Parn and David John Edwards

This paper aims to conduct a comprehensive literature review in the tidal energy physics, the ocean environment, hydrodynamics of horizontal axis tidal turbines and bio-mimicry.

Abstract

Purpose

This paper aims to conduct a comprehensive literature review in the tidal energy physics, the ocean environment, hydrodynamics of horizontal axis tidal turbines and bio-mimicry.

Design/methodology/approach

The paper provides an insight of the tidal turbine blade design and need for renewable energy sources to generate electricity through clean energy sources and less CO2 emission. The ocean environment, along with hydrodynamic design principles of a horizontal axis tidal turbine blade, is described, including theoretical maximum efficiency, blade element momentum theory and non-dimensional forces acting on tidal turbine blades.

Findings

This review gives an overview of fish locomotion identifying the attributes of the swimming like lift-based thrust propulsion, the locomotion driving factors: dorsal fins, caudal fins in propulsion, which enable the fish to be efficient even at low tidal velocities.

Originality/value

Finally, after understanding the phenomenon of caudal fin propulsion and its relationship with tidal turbine blade hydrodynamics, this review focuses on the implications of bio-mimicking a curved caudal fin to design an efficient horizontal axis tidal turbine.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 August 2019

Hoseyn A. Amiri, Rouzbeh Shafaghat, Rezvan Alamian, Seyed Mohamad Taheri and Mostafa Safdari Shadloo

The purpose of this paper is to design, investigate and optimize a horizontal axis tidal turbine (HATT) using computer-aided numerical simulation and computational fluid dynamics…

Abstract

Purpose

The purpose of this paper is to design, investigate and optimize a horizontal axis tidal turbine (HATT) using computer-aided numerical simulation and computational fluid dynamics (CFD). This is the first step of research and development (R&D) for implementation in the Persian Gulf condition. To do so, suitable locations are reviewed. Then, the optimization is focused on determining the optimum fixed pitch angle (β) of a three-bladed HATT based on the widespread multiple reference frame (MRF) technique to calculate power and thrust coefficients at different operational rotating speeds.

Design/methodology/approach

To simplify the problem and reducing the computational costs due to cyclic symmetry only one blade, accordingly one-third of the whole computational domain is considered in the modeling. Due to flow’s nature involving rotating, separation and recirculation, a realizable κ-ε turbulence model with standard wall function is selected to capture flow characteristics influenced by the rotor and near the wall region. Simulations are conducted for two free-stream velocities, then compared with their dependencies through the dimensionless tip speed ratio (TSR) parameter.

Findings

The validation process of the simulations is carried out by the use of AeroDyn BEM code, which has been evaluated by comparing with two experimental data. As results, the highest coefficient of power is achieved at ß = 19.3° at TSR = 4 with the value around 0.41 and 0.816 for thrust coefficient. Furthermore, to comprehend the rotor’s performance and simulation method, flow characteristics due to the rise in angular velocity is discussed in detail. Moreover, the major phenomenon, cavitation occurrence, is also checked at the critical situation where it is found to be safe.

Originality/value

By comparing and evaluating the results to other HATTs, it implies that the proposed rotor of this study is feasible and proved by CFD evaluation at this step. However, the current rotor is awaiting a justification through experimental assessment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 August 2022

Mahdi Nazarieh, Hamed Kariman and Siamak Hoseinzadeh

This study aims to simulate Hunter turbine in Computer Forensic Examiner (CFX) environment dynamically. For this purpose, the turbine is designed in desired dimensions and…

Abstract

Purpose

This study aims to simulate Hunter turbine in Computer Forensic Examiner (CFX) environment dynamically. For this purpose, the turbine is designed in desired dimensions and simulated in ANSYS software under a specific fluid flow rate. The obtained values were then compared with previous studies for different values of angles (θ and α). The amount of validation error were obtained.

Design/methodology/approach

In this research, at first, the study of fluid flow and then the examination of that in the tidal turbine and identifying the turbines used for tidal energy extraction are performed. For this purpose, the equations governing flow and turbine are thoroughly investigated, and the computational fluid dynamic simulation is done after numerical modeling of Hunter turbine in a CFX environment.

Findings

The failure results showed; 11.25% for the blades to fully open, 2.5% for blades to start, and 2.2% for blades to close completely. Also, results obtained from three flow coefficients, 0.36, 0.44 and 0.46, are validated by experimental data that were in high-grade agreement, and the failure value coefficients of (0.44 and 0.46) equal (0.013 and 0.014), respectively.

Originality/value

In this research, at first, the geometry of the Hunter turbine is discussed. Then, the model of the turbine is designed with SolidWorks software. An essential feature of SolidWorks software, which was sorely needed in this project, is the possibility of mechanical clamping of the blades. The validation is performed by comparing the results with previous studies to show the simulation accuracy. This research’s overall objective is the dynamical simulation of Hunter turbine with the CFX. The turbine was then designed to desired dimensions and simulated in the ANSYS software at a specified fluid flow rate and verified, which had not been done so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 May 2022

Mehmet Numan Kaya, Oguz Uzol, Derek Ingham, Faruk Köse and Riza Buyukzeren

The purpose of this paper is to thoroughly investigate the aerodynamic effects of blade pitch angle on small scaled horizontal axis wind turbines (HAWTs) using computational fluid…

Abstract

Purpose

The purpose of this paper is to thoroughly investigate the aerodynamic effects of blade pitch angle on small scaled horizontal axis wind turbines (HAWTs) using computational fluid dynamics (CFD) method to find out the sophisticated effects on the flow phenomena and power performance.

Design/methodology/approach

A small HAWT is used as a reference to validate the model and examine the aerodynamic effects. The blade pitch angle was varied between +2 and −6 degrees, angles which are critical for the reference wind turbine in terms of performance, and the CFD simulations were performed at different tip speed ratio values, λ = 2, 3, 4, 5, 6, 7, 9 and 10.5 to cover the effects in various conditions. Results are examined in two different aspects, namely, general performance and the flow physics.

Findings

The power performance varies significantly according to the tip speed ratio; the power coefficient increases up to a certain pitch angle at the design tip speed ratio (λ = 6); however, between λ = 2 and 4, the more the blade is pitched downwards, the larger is the power coefficient, the smaller is the thrust coefficient. Similarly, for tip speed ratios higher than λ = 8, the positive effect of the low pitch angles on the power coefficient at λ = 6 reverses. The flow separation location moves close to the leading edge at low tip speed ratios when the blade is pitched upwards and the also tip vortices become more intense. In conclusion, the pitch control can significantly contribute to the performance of small HAWTs depending on different conditions.

Originality/value

In the literature, only very little attention has been paid to the aerodynamic effects of pitch angle on HAWTs, and no such study is available about the effects on small HAWTs. The change of blade pitch angle was maintained at only one degree each time to capture even the smallest aerodynamic effects, and the results are presented in terms of the power performance and flow physics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2020

Dandun Mahesa Prabowoputra, Aditya Rio Prabowo, Syamsul Hadi and Jung Min Sohn

In Southeast Asia, the renewable energy produced from hydropower systems has significant potential. Therefore, adequate development is needed to prevent future energy-related…

Abstract

Purpose

In Southeast Asia, the renewable energy produced from hydropower systems has significant potential. Therefore, adequate development is needed to prevent future energy-related crises. This study, therefore, aims to determine the variations effects in geometry and the geometrical factors on turbine performance.

Design/methodology/approach

The developed aspects are selected to determine the blade shape, its number and multistage requirements. The study was conducted in 3D simulation, with Ansys software used to calculate a series of computational fluid dynamic problems. The aspect ratio applied in this study utilized the ratio of the overall diameter of the rotor height (D / H), which is 1.

Findings

The results showed that the highest Cp-max value, number of blades and stages were 0.2, two and three, respectively. Furthermore, these attributes combined to improve the performance of hydroturbines.

Research limitations/implications

The research was fully conducted using numerical simulation, which requires sustainable research in the form of laboratory experiments. Also, pioneer experiments were conducted using benchmarking to ensure the results obtained are reliable.

Practical implications

Hydropower is one of the best renewable energy sources in Indonesia with a large potential in the archipelago and tropical countries due to rivers and various water sources. The current generated is a useful reference for Savonius design.

Originality/value

The originality of this study is to examine the three aspects of the geometry of the rotor, such as the number and shape of blades, as well as the stages in the same boundary conditions. Therefore, the comparison of the effects of changes in geometry on turbine performance is more acceptable and complete compared to the pioneer works, which focused on a parameter. This research combines several aspects to determine the effect of rivers and various water sources on the hydroturbine.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 2009

The purpose of this paper is to look at the UK's tidal and wave energy resources and the numerous technologies in this area.

1135

Abstract

Purpose

The purpose of this paper is to look at the UK's tidal and wave energy resources and the numerous technologies in this area.

Design/methodology/approach

The paper looks at the innovations in the UK's tidal and wave energy technology.

Findings

While the Government may have been slow in recognizing the potential of the UK's tidal and wave energy resources, this has not stopped the country's marine renewable energy sector becoming a world leader, and a “hotbed” for innovation. For instance, a major area of technology where the UK is among the world leaders is in tidal stream systems, and numerous technologies are at various stages of research, development and commercialization. The same is true for wave energy conversation, where again a number of UK companies are developing and delivering some of the world's most advanced systems.

Originality/value

The paper provides useful information on the innovations in marine renewable energy sector.

Details

Strategic Direction, vol. 25 no. 1
Type: Research Article
ISSN: 0258-0543

Keywords

Article
Publication date: 3 March 2020

Asmaa F. Elelamy, Nasser S. Elgazery and R. Ellahi

This paper aims to investigate a mathematical model with numerical simulation for bacterial growth in the heart valve.

Abstract

Purpose

This paper aims to investigate a mathematical model with numerical simulation for bacterial growth in the heart valve.

Design/methodology/approach

For antibacterial activities and antibodies properties, nanoparticles have been used. As antibiotics are commonly thought to be homogeneously dispersed through the blood, therefore, non-Newtonian fluid of Casson micropolar blood flow in the heart valve for two dimensional with variable properties is used. The heat transfer with induced magnetic field translational attraction under the influence of slip is considered for the resemblance of the heart valve prosthesis. The numeral results have been obtained by using the Chebyshev pseudospectral method.

Findings

It is proven that vascular resistance decreases for increasing blood velocity. It is noted that when the magnetic field will be induced from the heart valve prosthesis then it may cause a decrease in vascular resistance. The unbounded molecules and antibiotic concentration that are able to penetrate the bacteria are increased by increasing values of vascular resistance. The bacterial growth density cultivates for upswing values of magnetic permeability and magnetic parameters.

Originality/value

To the best of the authors’ knowledge, this is the first study to investigate a mathematical model with numerical simulation for bacterial growth in the heart valve.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2019

Seyed Hamid Delbari, Amir Nejat, Mohammad H. Ahmadi, Ali Khaleghi and Marjan Goodarzi

This study aims to carry out numerical modeling to predict aerodynamic noise radiation from four different Savonius rotor blade profile.

Abstract

Purpose

This study aims to carry out numerical modeling to predict aerodynamic noise radiation from four different Savonius rotor blade profile.

Design/methodology/approach

Incompressible unsteady reynolds-averaged navier-stokes (URANS) approach using gamma–theta turbulence model is conducted to obtain the time accurate turbulent flow field. The Ffowcs Williams and Hawkings (FW-H) acoustic analogy formulation is used for noise predictions at optimal tip speed ratio (TSR).

Findings

The mean torque and power coefficients are compared with the experimental data and acceptable agreement is observed. The total and Mono+Dipole noise graphs are presented. A discrete tonal component at low frequencies in all graphs is attributed to the blade passing frequency at the given TSR. According to the noise prediction results, Bach type rotor has the lowest level of noise emission. The effect of TSR on the noise level from the Bach rotor is investigated. A direct relation between angular velocity and the noise emission is found.

Practical implications

The savonius rotor is a type of vertical axis wind turbines suited for mounting in the vicinity of residential areas. Also, wind turbines wherein operation are efficient sources of tonal and broadband noises and affect the inhabitable environment adversely. Therefore, the acoustic pollution assessment is essential for the installation of wind turbines in residential areas.

Originality/value

This study aims to investigate the radiated noise level of four common Savonius rotor blade profiles, namely, Bach type, Benesh type, semi-elliptic and conventional. As stated above, numbers of studies exploit the URANS method coupled with the FW-H analogy to predict the aeroacoustics behavior of wind turbines. Therefore, this approach is chosen in this research to deal with the aeroacoustics and aerodynamic calculation of the flow field around the aforementioned Savonius blade profiles. The effect of optimal TSR on the emitted noise and the contribution of thickness, loading and quadrupole sources are of interest in this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 September 2019

Efstathios E. Theotokoglou, Georgios Balokas and Evgenia K. Savvaki

The purpose of this paper is to investigate the buckling behavior of the load-carrying support structure of a wind turbine blade.

Abstract

Purpose

The purpose of this paper is to investigate the buckling behavior of the load-carrying support structure of a wind turbine blade.

Design/methodology/approach

Experimental experience has shown that local buckling is a major failure mode that dominantly influences the total collapse of the blade.

Findings

The results from parametric analyses offer a clear perspective about the buckling capacity but also about the post-buckling behavior and strength of the models.

Research limitations/implications

This makes possible to compare the response of the different fiber-reinforced polymers used in the computational model.

Originality/value

Furthermore, this investigation leads to useful conclusions for the material design optimization of the load-carrying box girder, as significant advantages derive not only from the combination of different fiber-reinforced polymers in hybrid material structures, but also from Kevlar-fiber blades.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Access

Year

All dates (18)

Content type

1 – 10 of 18