Search results

1 – 2 of 2
Article
Publication date: 21 February 2024

Seo-Hyeon Oh and Keun Park

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally…

Abstract

Purpose

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally burdensome, especially for intricate microcellular architectures. This study aims to propose a direct slicing method tailored for digital light processing-type AM processes for the efficient generation of slicing data for microcellular structures.

Design/methodology/approach

The authors proposed a direct slicing method designed for microcellular structures, encompassing micro-lattice and triply periodic minimal surface (TPMS) structures. The sliced data of these structures were represented mathematically and then convert into 2D monochromatic images, bypassing the time-consuming slicing procedures required by 3D STL data. The efficiency of the proposed method was validated through data preparations for lattice-based nasopharyngeal swabs and TPMS-based ellipsoid components. Furthermore, its adaptability was highlighted by incorporating 2D images of additional features, eliminating the requirement for complex 3D Boolean operations.

Findings

The direct slicing method offered significant benefits upon implementation for microcellular structures. For lattice-based nasopharyngeal swabs, it reduced data size by a factor of 1/300 and data preparation time by a factor of 1/8. Similarly, for TPMS-based ellipsoid components, it reduced data size by a factor of 1/60 and preparation time by a factor of 1/16.

Originality/value

The direct slicing method allows for bypasses the computational burdens associated with traditional indirect slicing from 3D STL data, by directly translating complex cellular structures into 2D sliced images. This method not only reduces data volume and processing time significantly but also demonstrates the versatility of sliced data preparation by integrating supplementary features using 2D operations.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 January 2023

Jaya Priyadarshini and Amit Kumar Gupta

A flexible manufacturing system (FMS) helps improve the system’s performance, thus increasing its overall competitiveness. FMS is an essential component of Industry 4.0 (I4.0)…

Abstract

Purpose

A flexible manufacturing system (FMS) helps improve the system’s performance, thus increasing its overall competitiveness. FMS is an essential component of Industry 4.0 (I4.0), which has revolutionized the way firms manufacture their products. This study aims to investigate the diverse focus of the research being published over the years and the direction of scholarly work in applying FMSs in business and management.

Design/methodology/approach

A total of 1,096 bibliometric data were extracted from the Scopus database from the years 2001 to 2021. A systematic review and bibliometric analysis were performed on the data and related articles for performance measurement and scientific mapping on the FMS themes.

Findings

Based on co-keyword, the study reveals four major themes in the FMS field: mathematical models and quantitative techniques, scheduling and optimization techniques, cellular manufacturing and decision-making in FMSs. Based on bibliometric coupling on 2018–2021 bibliometric data, four themes emerged for future research: scheduling problems in FMS, manufacturing cell formation problem, interplay of FMS with other latest technologies and I4.0 and FMS.

Originality/value

The originality lies in answering the following research questions: What are the most highlighting themes in FMS, and how have they evolved over the past 20 years (2001–2021)? What topics have been at the forefront of research in FMS in the past five years (2016–2021)? What are the promising avenues of research in FMS?

Details

Journal of Modelling in Management, vol. 19 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 2 of 2