Search results

1 – 8 of 8
Article
Publication date: 6 October 2023

MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…

Abstract

Purpose

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.

Design/methodology/approach

Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.

Findings

The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.

Practical implications

The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.

Originality/value

The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2023

Chandrapushpam T., M. Bhuvaneswari and Sivasankaran Sivanandam

This paper aims to explore the double diffusive magneto-hydrodynamic (MHD) squeezed flow of (Cu–water) nanofluid between two analogous plates filled with Darcy porous material in…

Abstract

Purpose

This paper aims to explore the double diffusive magneto-hydrodynamic (MHD) squeezed flow of (Cu–water) nanofluid between two analogous plates filled with Darcy porous material in existence of chemical reaction and external magnetic field.

Design/methodology/approach

The governing nonlinear equations are transformed into ordinary differential equations by means of similarity transforms, and the coupled mass and heat transference equations are resolved analytically with the application of differential transform method (DTM). The effects of different relevant parameters on velocity, temperature and concentration, including the squeeze number, magnetic parameter, Biot number, Darcy number and chemical reaction parameter, are illustrated with figures. In addition, for various parameters, the local skin friction coefficient, local Nusselt number and local Sherwood number are computed and are graphically displayed.

Findings

It is observed that the squeeze number has a direct relationship with Sherwood number and an inverse relationship with skin friction as Biot number increases. With enhanced Biot numbers, the temperature value increases during both squeeze and non-squeeze moments, but the temperature values are higher for squeeze moments compared to the other case.

Practical implications

This research has potential applications in various large-scale enterprises that might benefit from increased productivity.

Social implications

The results are useful to thermal science community.

Originality/value

Unique and valuable insights are provided by studying the impact of chemical reaction on double diffusive MHD squeezing copper–water nanofluid flow between parallel plates filled with porous medium. In addition, this research has potential applications in various large-scale enterprises that might benefit from increased productivity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 July 2023

A. Zeeshan, Muhammad Imran Khan, R. Ellahi and Zaheer Asghar

This study aims to model the important flow response quantities over a shrinking wedge with the help of response surface methodology (RSM) and an artificial neural network (ANN)…

Abstract

Purpose

This study aims to model the important flow response quantities over a shrinking wedge with the help of response surface methodology (RSM) and an artificial neural network (ANN). An ANN simulation for optimal thermal transport of incompressible viscous fluid under the impact of the magnetic effect (MHD) over a shrinking wedge with sensitivity analysis and optimization with RSM has yet not been investigated. This effort is devoted to filling the gap in existing literature.

Design/methodology/approach

A statistical experimental design is a setup with RSM using a central composite design (CCD). This setup involves the combination of values of input parameters such as porosity, shrinking and magnetic effect. The responses of skin friction coefficient and Nusselt number are required against each parameter combination of the experimental design, which is computed by solving the simplified form of the governing equations using bvp4c (a built-in technique in MATLAB). An empirical model for Cfx and Nux using RSM and ANN adopting the Levenberg–Marquardt algorithm based on trained neural networks (LMA-TNN) is attained. The empirical model for skin friction coefficient and Nusselt number using RSM has 99.96% and 99.99% coefficients of determination, respectively.

Findings

The values of these matrices show the goodness of fit for these quantities. The authors compared the results obtained from bvp4c, RSM and ANN and found them all to be in good agreement. A sensitivity analysis is performed, which shows that Cfx as well as Nux are most affected by porosity. However, they are least affected by magnetic parameters.

Originality/value

This study aims to simulate ANN and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms.

Abstract

Purpose

The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms.

Design/methodology/approach

The thermal radiation contribution, the chemical change and heat generation take fluidity into account. The flow equations are used to produce a series of dimensionless equations with appropriate nondimensional quantities. By using the spectral homotopy analysis method (SHAM), simplified dimensionless equations have been quantitatively solved. With Chebyshev pseudospectral technique, SHAM integrates the approach of the well-known method of homotopical analysis to the set of altered equations. In terms of velocity, concentration and temperature profiles, the impacts of Prandtl number, chemical reaction and thermal radiation are studied. All findings are visually shown and all physical values are calculated and tabulated.

Findings

The results indicate that an increase in the variable viscosity leads to speed and temperature increases. Based on the transport nature of micropolar Walters B fluids, the thermal conductivity has great impact on the Prandtl number and decrease the velocity and temperature. The current research was very well supported by prior literature works. The results in this paper are anticipated to be helpful for biotechnology, food processing and boiling. It is used primarily in refrigerating systems, tensile heating to large-scale heating and oil pipeline reduction.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 June 2023

Dhabaleswar Mohapatra and Snehashish Chakraverty

Investigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking…

Abstract

Purpose

Investigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking model. Nonetheless, due to observational or experimental errors, or any other circumstance, it may contain some incomplete information. Fuzzy sets can be used to deal with uncertainty. Yet, there may be some inconsistency in the membership as well. As a result, the primary goal of this proposed work is to numerically solve the model in a type-2 fuzzy environment.

Design/methodology/approach

Triangular perfect quasi type-2 fuzzy numbers (TPQT2FNs) are used to deal with the uncertainty in the model. In this work, concepts of r2-cut at r1-plane are used to model the problem's uncertain parameter. The Legendre wavelet method (LWM) is then utilised to solve the giving up smoking model in a type-2 fuzzy environment.

Findings

LWM has been effectively employed in conjunction with the r2-cut at r1-plane notion of type-2 fuzzy sets to solve the model. The LWM has the advantage of converting the non-linear fractional order model into a set of non-linear algebraic equations. LWM scheme solutions are found to be well agreed with RK4 scheme solutions. The existence and uniqueness of the model's solution have also been demonstrated.

Originality/value

To deal with the uncertainty, type-2 fuzzy numbers are used. The use of LWM in a type-2 fuzzy uncertain environment to achieve the model's required solutions is quite fascinating, and this is the key focus of this work.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 February 2024

Muhammad Sohail and Syed Tehseen Abbas

This study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable…

Abstract

Purpose

This study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable sheet, flow is produced. Heat generation effect, thermal radiation, variable thermal conductivity, variable diffusion coefficient and Cattaneo–Christov double diffusion models are used to evaluate thermal and concentration diffusions.

Design/methodology/approach

The governing partial differential equations (PDEs) have been made simpler using a boundary layer method. Strong nonlinear ordinary differential equations (ODEs) relate to appropriate non-dimensional similarity variables. The optimal homotopy analysis technique is used to develop solution.

Findings

Graphs analyze the impact of many relevant factors on temperature and concentration. The physical parameters, such as mass and heat transfer rates at the wall and surface drag coefficients, are also displayed and explained.

Originality/value

The reported work discusses the contribution of generalized flux models to note their impact on heat and mass transport.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2024

Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Amjid Ali and Imran Khan

The purpose of this study is to solve two unique but difficult partial differential equations: the foam drainage equation and the nonlinear time-fractional fisher’s equation…

Abstract

Purpose

The purpose of this study is to solve two unique but difficult partial differential equations: the foam drainage equation and the nonlinear time-fractional fisher’s equation. Through our methods, we aim to provide accurate solutions and gain a deeper understanding of the intricate behaviors exhibited by these systems.

Design/methodology/approach

In this study, we use a dual technique that combines the Aboodh residual power series method and the Aboodh transform iteration method, both of which are combined with the Caputo operator.

Findings

We develop exact and efficient solutions by merging these unique methodologies. Our results, presented through illustrative figures and data, demonstrate the efficacy and versatility of the Aboodh methods in tackling such complex mathematical models.

Originality/value

Owing to their fractional derivatives and nonlinear behavior, these equations are crucial in modeling complex processes and confront analytical complications in various scientific and engineering contexts.

1 – 8 of 8