Search results

1 – 10 of over 2000
Article
Publication date: 6 April 2020

Witold Ogierman

The purpose of this study is to develop a homogenization approach that ensures both high accuracy and time-efficient solution for elastic-plastic functionally graded composites.

Abstract

Purpose

The purpose of this study is to develop a homogenization approach that ensures both high accuracy and time-efficient solution for elastic-plastic functionally graded composites.

Design/methodology/approach

The paper presents a novel two-stage hybrid homogenization approach that combines advantages of the mean field homogenization and homogenization based on the finite element method (FEM). The groundbreaking nature of the developed approach is associated with division of the hybrid homogenization procedure into two stages, which allows to very efficiently determine the solution for arbitrary volume fraction of the reinforcement. This paper concerns also on modelling of composites with randomly distributed prolate and oblate particles. For this purpose, the hybrid homogenization was implemented in the framework of the discrete orientation averaging procedure involving pseudo-grain discretization method.

Findings

Agreement between the results obtained using the proposed approach and the standard FEM-based homogenization is very good (up to the volume fraction of 0.3).

Originality/value

The proposed two-stage homogenization approach allows to obtain the solution for materials with arbitrary volume fraction of the reinforcement very efficiently; therefore, it is highly beneficial for the two-scale modeling of nonlinear functionally graded materials and structures.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2024

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…

Abstract

Purpose

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.

Design/methodology/approach

For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.

Findings

The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.

Research limitations/implications

In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.

Originality/value

Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2005

Marcin Kaminski and Marcin Pawlik

Effectiveness of the homogenization method for various heat transfer problems of engineering composites is the main aim of the paper. This comparative study is done for layered…

Abstract

Effectiveness of the homogenization method for various heat transfer problems of engineering composites is the main aim of the paper. This comparative study is done for layered, fiber and particle reinforced Representative Volume Elements (RVE) for composites made of widely used components. Mathematical model is based on the effective modules method introduced for periodic composites ‐ effective heat conductivity is calculated in the closed form for specific spatial distribution of the components, while effective volumetric heat capacity is obtained from a simple spatial averaging. Such a homogenization scheme makes possible to significantly simplify the numerical analysis of transient heat transfer phenomena in various types of composites. The comparison of temperature histories obtained for the real and homogenized composite models is carried out using the Finite Element Method system ANSYS. As is demonstrated for various boundary problems, a homogenization technique in terms of composites types collected in the paper give satisfactory agreement with the real structure modeling; further numerical studies on composite cells discretization should increase modeling efficiency and diminish the numerical errors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Book part
Publication date: 5 February 2016

Otto Hüther and Georg Krücken

European universities have changed dramatically over the last two to three decades. The two dominant frameworks to analyze these changes are “New Public Management” and the…

Abstract

European universities have changed dramatically over the last two to three decades. The two dominant frameworks to analyze these changes are “New Public Management” and the construction of “complete organizations.” Both of these approaches highlight isomorphic processes leading to increased homogenization within European universities. However, empirical evidence suggests that European universities are differentiating from each other at the same time as they are becoming more isomorphic. To explain the simultaneity of homogenization and differentiation among European universities, we use the concept of nested organizational fields. We distinguish between a global field, a European field, and several national, state, and regional fields. Homogenization and differentiation are then the result of similar or different field embeddedness of European universities. The advantage of this approach lies in explaining homogenization and differentiation of universities within individual countries on the one hand, as well as cross-national homogenization and differentiation of subgroups of universities on the other hand.

Details

The University Under Pressure
Type: Book
ISBN: 978-1-78560-831-5

Keywords

Article
Publication date: 1 October 2006

J. Gyselinck and X.M. López‐Fernández

To review and discuss recently proposed homogenization methods for laminated magnetic cores and multi‐turn windings in FE models of electromagnetic devices.

Abstract

Purpose

To review and discuss recently proposed homogenization methods for laminated magnetic cores and multi‐turn windings in FE models of electromagnetic devices.

Design/methodology/approach

The frequency‐domain homogenization is based on the adoption of complex and frequency‐dependent material characteristics (e.g. reluctivity) in the homogenized domain. The value of the complex quantity is obtained analytically or by means of a simple 2D FE model. The time‐domain counterpart requires the introduction of additional unknowns and equation.

Findings

The homogenization methods allow to take into account the global eddy current effect in the individual laminations and wires, with a reasonable precision and computational cost.

Research limitations/implications

The homogenization methods have been validated numerically, i.e. by comparison with brute‐force FE computations where the eddy current effects are directly and accurately taken into account. Experimental validation should follow.

Originality/value

The analogy between the homogenization of laminated cores and windings has been evidenced.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 June 2019

Xikui Li, Songge Zhang and Qinglin Duan

This paper aims to present a novel scheme for imposing periodic boundary conditions with downscaled macroscopic strain measures of gradient Cosserat continuum on the…

Abstract

Purpose

This paper aims to present a novel scheme for imposing periodic boundary conditions with downscaled macroscopic strain measures of gradient Cosserat continuum on the representative volume element (RVE) of discrete particle assembly in the frame of the second-order computational homogenization methods for granular materials.

Design/methodology/approach

The proposed scheme is based on the generalized Hill’s lemma of gradient Cosserat continuum and the incremental non-linear constitutive relation condensed to the peripheral particles of the RVE of discrete particle assembly. The generalized Hill’s lemma conducts to downscale the macroscopic strain or stress measures and to impose the periodic boundary conditions on the RVE boundary so that the Hill-Mandel energy equivalence condition is ensured. Because of the incremental non-linear constitutive relation condensed to the peripheral particles of the RVE, the periodic boundary displacement and traction constraints together with the downscaled macroscopic strains and strain gradients, micro-rotations and curvatures are imposed in the point-wise sense without the need of introducing the Lagrange multipliers for enforcing the periodic boundary displacement and traction constraints in a weak sense.

Findings

Numerical results demonstrate that the applicability and effectiveness of the proposed scheme in imposing the periodic boundary conditions on the RVE. The results of the RVE subjected to the periodic boundary conditions together with the displacement boundary conditions in the second-order computational homogenization for granular materials provide the desired estimations, which lie between the upper and the lower bounds provided by the displacement and the traction boundary conditions imposed on the RVE respectively.

Research limitations/implications

Each grain in the particulate system under consideration is assumed to be rigid and circular.

Practical implications

The proposed scheme for imposing periodic boundary conditions on the RVE can be adopted solely for estimating the effective mechanical properties of granular materials and/or integrated into the frame of the second-order computational homogenization method with a nested finite element method-discrete element method solution procedure for granular materials. It will tend to provide, at least theoretically, more reasonable results for effective material properties and solutions of a macroscopic boundary value problem simulated by the computational homogenization method.

Originality/value

This paper presents a novel scheme for imposing periodic boundary conditions with downscaled macroscopic strain measures of gradient Cosserat continuum on the RVE of discrete particle assembly for granular materials without need of introducing Lagrange multipliers for enforcing periodic boundary conditions in a weak (integration) sense.

Article
Publication date: 1 June 2005

H. Waki, H. Igarashi and T. Honma

To analyze effectively magnetic shielding effects by shields with fine structure.

Abstract

Purpose

To analyze effectively magnetic shielding effects by shields with fine structure.

Design/methodology/approach

Simplification of the fine structure makes it possible to analyze them efficiently. The authors have introduced a homogenization method to estimate effective permeability of magnetic composite structure for the static field. The homogenization method is applied to the analysis of magnetic shields composed of steel plates and steel rods against DC power lines to test its feasibility.

Findings

The properties of the magnetic shielding are analyzed by using the homogenization method. The errors of the magnetic fields increase in case of very few layers.

Originality/value

The simplification of the magnetic shields with fine structure by using the homogenization method makes it possible to analyze efficiently magnetic shielding effects, although the accuracy becomes worse in case of very few layers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 April 2023

Wanderson Ferreira dos Santos, Ayrton Ribeiro Ferreira and Sergio Persival Baroncini Proença

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media…

Abstract

Purpose

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media. The effects of cell morphology and imposed boundary conditions are assessed. The sensitivity of the yield surfaces to the Lode angle is also investigated in detail.

Design/methodology/approach

The microscale of the material is modelled by the concept of Representative Volume Element (RVE) or unit cell, which is numerically simulated through three-dimensional finite element analyses. Numerous loading conditions are considered to create complete yield surfaces encompassing high, intermediate and low triaxialities. The influence of cell morphology on the yield surfaces is assessed considering a spherical cell with spherical void and a cubic RVE with spherical void, both under uniform strain boundary condition. The use of spherical cell is interesting as preferential directions in the effective behaviour are avoided. The periodic boundary condition, which favours strain localization, is imposed on the cubic RVE to compare the results. Small strains are assumed and the cell matrix is considered as a perfect elasto-plastic material following the von Mises yield criterion.

Findings

Different morphologies for the cell imply in different yield conditions for the same load situations. The yield surfaces in correspondence to periodic boundary condition show significant differences compared to those obtained by imposing uniform strain boundary condition. The stress Lode angle has a strong influence on the geometry of the yield surfaces considering low and intermediate triaxialities.

Originality/value

The exhaustive computational study of the effects of cell morphologies and imposed boundary conditions fills a gap in the full representation of the flow surfaces. The homogenisation-based strategy allows us to further investigate the influence of the Lode angle on the yield surfaces.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 August 2019

Ryoko Minehisa, Yasuhito Takahashi, Koji Fujiwara, Norio Takahashi, Masafumi Fujita, Kazuma Tsujikawa and Ken Nagakura

This paper aims to propose a homogenization method considering magnetic anisotropy for a magnetic field analysis of a turbine generator. To verify the validity of the proposed…

Abstract

Purpose

This paper aims to propose a homogenization method considering magnetic anisotropy for a magnetic field analysis of a turbine generator. To verify the validity of the proposed method, the effects of magnetic anisotropy and a space factor on a no-load saturation curve and no-load iron loss of the turbine generator are discussed.

Design/methodology/approach

The proposed method was derived from the combination of the homogenization of microscopic fields in a laminated iron core with the modelling of two-dimensional magnetic properties based on free energy. To verify the validity, the proposed method was applied to a finite-element analysis of a simple ring core model. Finally, a no-load saturation curve and iron loss of the turbine generator was investigated by using the proposed method.

Findings

The computational accuracy of the homogenization method considering magnetic anisotropy is almost the same as that of the detailed modelling of the laminated structure in the magnetic field analysis of the laminated iron core. Furthermore, it is clarified that magnetic anisotropy does not have a large influence on the no-load saturation curve of the turbine generator because of the large air gap. On the other hand, the space factor affects the shape of the no-load saturation curve.

Originality/value

This paper verifies the validity of the homogenization method considering magnetic anisotropy method and elucidates the effects of magnetic anisotropy and a space factor on no-load characteristics of the turbine generator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2004

G.A. D'Addetta, E. Ramm, S. Diebels and W. Ehlers

In this paper, a new homogenization technique for the determination of dynamic and kinematic quantities of representative elementary volumes (REVs) in granular assemblies is…

1408

Abstract

In this paper, a new homogenization technique for the determination of dynamic and kinematic quantities of representative elementary volumes (REVs) in granular assemblies is presented. Based on the definition of volume averages, expressions for macroscopic stress, couple stress, strain and curvature tensors are derived for an arbitrary REV. Discrete element model simulations of two different test set‐ups including cohesionless and cohesive granular assemblies are used as a validation of the proposed homogenization technique. A non‐symmetric macroscopic stress tensor, as well as couple stresses are obtained following the proposed procedure, even if a single particle is described as a standard continuum on the microscopic scale.

Details

Engineering Computations, vol. 21 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 2000