Search results

1 – 1 of 1
To view the access options for this content please click here
Article
Publication date: 13 September 2011

V. Geža, A. Jakovičs, U. Krieger and B. Halbedel

The purpose of this paper is to investigate the outlet of a special glass melting system, which is used to control melt flow and modify flow pattern.

Abstract

Purpose

The purpose of this paper is to investigate the outlet of a special glass melting system, which is used to control melt flow and modify flow pattern.

Design/methodology/approach

Numerical calculations in ANSYS and ANSYS CFX were used to study electromagnetic, thermal, hydrodynamic and chemical mixing processes, results are validated by comparison with experimental data.

Findings

Obtained results show that investigated approach can improve glass melt chemical homogeneity significantly – Lorentz force driven melt movement in conjunction with diffusion process ensures good mixing quality.

Research limitations/implications

The mixing in glass melt is present only in azimuthal direction (in cylindrical coordinate system associated with outlet tube axis) but the radial homogenization is determined by diffusion only.

Practical implications

The experiments in JSJ GmbH with soda lime glass were successful and showed mixing effect in output material, thus providing additional method for glass production.

Originality/value

Although the electrical conductivity of glass is very low, the melt motion is generated by EM forces in this equipment, thus this approach is innovative in glass production technology where typical motion source is buoyancy or mechanical mixing.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1