Search results

1 – 10 of 38
Article
Publication date: 11 January 2024

Elijah Kusi, Isaac Boateng and Humphrey Danso

Using building information modelling (BIM) technology, a conventional structure in this study was converted into a green building to measure its energy usage and CO2 emissions.

137

Abstract

Purpose

Using building information modelling (BIM) technology, a conventional structure in this study was converted into a green building to measure its energy usage and CO2 emissions.

Design/methodology/approach

Digital images of the existing building conditions were captured using unmanned aerial vehicle (UAV), and were fed into Meshroom to generate the building’s geometry for 3D parametric model development. The model for the existing conventional building was created and converted to an energy model and exported to gbXML in Autodesk Revit for a whole building analysis which was carried out in the Green Building Studio (GBS). In the GBS, the conventional building was retrofitted into a green building to explore their energy consumption and CO2 emission.

Findings

By comparing the green building model to the conventional building model, the research found that the green building model saved 25% more energy while emitting 46.8% less CO2.

Practical implications

The study concluded that green building reduces energy consumption, thereby reducing the emission of CO2 into the environment. It is recommended that buildings should be simulated at the design stage to know their energy consumption and carbon emission performance before construction.

Social implications

Occupant satisfaction, operation cost and environmental safety are essential for sustainable or green buildings. Green buildings increase the standard of living and enhance indoor air quality.

Originality/value

This investigation aided in a pool of information on how to use BIM methodology to retrofit existing conventional buildings into green buildings, showing how green buildings save the environment as compared to conventional buildings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 19 May 2022

Christopher Amoah and Jeanne Smith

This study aims to examine the challenges for green retrofitting implementation in existing residential buildings to lower the running cost and achieve a better energy-efficient…

3963

Abstract

Purpose

This study aims to examine the challenges for green retrofitting implementation in existing residential buildings to lower the running cost and achieve a better energy-efficient system.

Design/methodology/approach

This study adopted a qualitative approach by interviewing conveniently selected 16 construction professionals, made up of architects, quantity surveyors and engineers. Data received were analysed using the content analysis method.

Findings

The findings revealed that the main barriers to incorporating green retrofitting in the existing residential buildings as the nature of the existing structures, limited knowledge, not being a priority and high costs involved in the process. Moreover, other factors influencing property developers’ decision to apply energy-efficient principles in a residential home include cost (initial capital and maintenance), level of knowledge, nature of the climate in the area, local legislation, more independence and increasing the property’s market value and environmental aspect.

Research limitations/implications

This study is limited to South Africa; thus, the literature available was limited.

Practical implications

People’s perceptions, either wrong or correct, affect their ability to make an informed decision to adopt green retrofitting principles, thereby denying them the opportunity to reap the associated benefits. Therefore, there is an urgent need for the construction industry stakeholders and government to increase educational opportunities for property owners on the importance of green retrofitting.

Originality/value

This study provides the occupants with the possible barriers and problem areas with implementing these principles. They will thus make an informed decision when implementing sustainable design methods.

Details

Journal of Facilities Management , vol. 22 no. 2
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 19 January 2024

Atinuke Arinola Ajani and Daramola Thompson Olapade

The concept of aging-in-place has gained notable significance in the last decade due to a dramatic demographic shift in global population dynamics that have considerably affected…

Abstract

Purpose

The concept of aging-in-place has gained notable significance in the last decade due to a dramatic demographic shift in global population dynamics that have considerably affected the ability of societies to adequately cater for their aging population. This paper examines some of the barriers to aging-in-place in the context of health needs, housing design and the role of retrofitting/smart home technologies in overcoming these barriers.

Design/methodology/approach

Using a narrative literature review approach, the authors undertook a comprehensive search of recent relevant literature focusing on five core thematic areas: health and aging, aging in place, barriers to aging in place, retrofitting and smart home technologies for successful aging in place. The authors entered appropriate keywords into interdisciplinary research databases and synthesized a coherent narrative discussing the thematic areas using the data extracted from the literature search.

Findings

There is a bidirectional relationship between aging and the home environment. Barriers to aging-in-place are mainly related to progressive decline in health, which alters the environmental needs of individuals. Appropriate building designs can significantly facilitate aging-in-place. The authors, therefore, highlight the role of retrofitting and smart home technologies as practical solutions to the challenges of the aging-in-place.

Practical implications

Forward planning in building design is essential to guarantee that the home environment is well adapted for the challenges of aging-in-place while also promoting healthy aging.

Originality/value

The paper shows the relationship between aging and the home environment and how building design considerations could enhance healthy aging-in-place.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 January 2024

Wanlin Chen and Joseph Lai

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research…

Abstract

Purpose

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research domain is lacking. This study aims to uncover the study trend, research hotspots, prominent contributors, research gaps and directions in this field.

Design/methodology/approach

With a hybrid review approach adopted, relevant literature was examined in three stages. In Stage 1, literature retrieved from Scopus was screened for their relevance to the study topic. In Stage 2, bibliographic data of the shortlisted literature underwent scientometric analyses by the VOSviewer software. Finally, an in-depth qualitative review was made on the key literature.

Findings

The research hotspots in performance assessment of residential building renovation were found: energy efficiency, sustainability, thermal comfort and life cycle assessment. After the qualitative review, the following research gaps and future directions were unveiled: (1) assessments of retrofits incorporating renewable energy and energy storage systems; (2) evaluation of policy options and financial incentives to overcome financial constraints; (3) establishment of reliable embodied energy and carbon datasets; (4) indoor environment assessment concerning requirements of COVID-19 prevention and involvement of water quality, acoustic insulation and daylighting indicators; and (5) holistic decision-making model concerning residents' intentions and safety, health, well-being and social indicators.

Originality/value

Pioneered in providing the first comprehensive picture of the assessment studies on residential building renovations, this study contributes to offering directions for future studies and insights conducive to making rational decisions for residential building renovations.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 28 February 2023

Michela Menconi, Noel Painting and Poorang Piroozfar

The inclusion of heritage dwellings in the UK decarbonization policies can contribute to cut operational carbon emissions from the building stock; this needs to be made a priority…

71

Abstract

Purpose

The inclusion of heritage dwellings in the UK decarbonization policies can contribute to cut operational carbon emissions from the building stock; this needs to be made a priority if net zero carbon targets are to be achieved. However, the energy and carbon savings potential of suitable retrofit interventions on this part of the stock is extremely variable and strictly intertwined with the range of baseline conditions of such dwellings. This study aims to propose a framework for interventions in traditional listed dwellings (TLDs) to improve their energy performance utilizing dynamic energy simulation (DES) of selected case studies (CSs) in the city of Brighton and Hove (South-East England).

Design/methodology/approach

To achieve this aim, the study established a baseline scenario which provides a basis for the assessment of energy performance and thermo-hygrometric behaviour pre- and post-interventions and allows for comparison between different CSs under comparable conditions.

Findings

Presenting a brief overview of the methodology adopted in this study, the paper describes the approach devised to generate such baseline scenario. The paper then compares the results obtained from simulation of normalized and baseline models with the status-quo energy consumption of the dwellings investigated (based on meter readings).

Originality/value

This analysis finally allows to highlight some key physical determinants of the baseline HEC which, in the following stage of research, proved to have a considerable effect also on the amount of energy and carbon savings achievable post retrofit interventions.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 18 October 2022

Stefania Stellacci, Leonor Domingos and Ricardo Resende

The purpose of this research is to test the effectiveness of integrating Grasshopper 3D and measuring attractiveness by a categorical based evaluation technique (M-MACBETH) for…

Abstract

Purpose

The purpose of this research is to test the effectiveness of integrating Grasshopper 3D and measuring attractiveness by a categorical based evaluation technique (M-MACBETH) for building energy simulation analysis within a virtual environment. Set of energy retrofitting solutions is evaluated against performance-based criteria (energy consumption, weight and carbon footprint), and considering the preservation of the cultural value of the building, its architectural and spatial configuration.

Design/methodology/approach

This research addresses the building energy performance analysis before and after the design of retrofitting solutions in extreme climate environments (2030–2100). The proposed model integrates data obtained from an advanced parametric tool (Grasshopper) and a multi-criteria decision analysis (M-MACBETH) to score different energy retrofitting solutions against energy consumption, weight, carbon footprint and impact on architectural configuration. The proposed model is tested for predicting the performance of a traditional timber-framed dwelling in a historic parish in Lisbon. The performance of distinct solutions is compared in digitally simulated climate conditions (design scenarios) considering different criteria weights.

Findings

This study shows the importance of conducting building energy simulation linking physical and digital environments and then, identifying a set of evaluation criteria in the analysed context. Architects, environmental engineers and urban planners should use computational environment in the development design phase to identify design solutions and compare their expected impact on the building configuration and performance-based behaviour.

Research limitations/implications

The unavailability of local weather data (EnergyPlus Weather File (EPW) file), the high time-resource effort, and the number/type of the energy retrofit measures tested in this research limit the scope of this study. In energy simulation procedures, the baseline generally covers a period of thirty, ten or five years. In this research, due to the fact that weather data is unavailable in the format required in the simulation process (.EPW file), the input data in the baseline is the average climatic data from EnergyPlus (2022). Additionally, this workflow is time-consuming due to the low interoperability of the software. Grasshopper requires a high-skilled analyst to obtain accurate results. To calculate the values for the energy consumption, i.e. the values of energy per day of simulation, all the values given per hour are manually summed. The values of weight are obtained by calculating the amount of material required (whose dimensions are provided by Grasshopper), while the amount of carbon footprint is calculated per kg of material. Then this set of data is introduced into M-MACBETH. Another relevant limitation is related to the techniques proposed for retrofitting this case study, all based on wood-fibre boards.

Practical implications

The proposed method for energy simulation and climate change adaptation can be applied to other historic buildings considering different evaluation criteria and context-based priorities.

Social implications

Context-based adaptation measures of the built environment are necessary for the coming years due to the projected extreme temperature changes following the 2015 Paris Agreement and the 2030 Agenda. Built environments include historical sites that represent irreplaceable cultural legacies and factors of the community's identity to be preserved over time.

Originality/value

This study shows the importance of conducting building energy simulation using physical and digital environments. Computational environment should be used during the development design phase by architects, engineers and urban planners to rank design solutions against a set of performance criteria and compare the expected impact on the building configuration and performance-based behaviour. This study integrates Grasshopper 3D and M-MACBETH.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 24 August 2023

Chiara Bertolin and Filippo Berto

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Abstract

Purpose

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Design/methodology/approach

It starts by reviewing the gaps in knowledge and practice which led to the creation and implementation of the research project SyMBoL—Sustainable Management of Heritage Buildings in long-term perspective funded by the Norwegian Research Council over the 2018–2022 period. The SyMBoL project is the motivation at the base of this special issue.

Findings

The editorial paper briefly presents the main outcomes of SyMBoL. It then reviews the contributions to the Special Issue, focussing on the connection or differentiation with SyMBoL and on multidisciplinary findings that address some of the initial referred gaps.

Originality/value

The article shortly summarizes topics related to sustainable preservation of heritage buildings in time of reduced resources, energy crisis and impacts of natural hazards and global warming. Finally, it highlights future research directions targeted to overcome, or partially mitigate, the above-mentioned challenges, for example, taking advantage of no sestructive techniques interoperability, heritage building information modelling and digital twin models, and machine learning and risk assessment algorithms.

Article
Publication date: 31 October 2023

Edmond Wai-Ming Lam, Albert P.C. Chan, Timothy O. Olawumi, Irene Wong and Kayode Olatunji Kazeem

Sustainability has been the subject of several scientific investigations. Many researchers in the construction industry have also examined a range of sustainability-related…

Abstract

Purpose

Sustainability has been the subject of several scientific investigations. Many researchers in the construction industry have also examined a range of sustainability-related studies. However, few studies have thoroughly reviewed implementing sustainability concepts in high-rise residential buildings (HRRBs).

Design/methodology/approach

By adopting scientometrics and systematic review (SR), this study seeks to map out recent sustainability trends and concepts in the design, development and operation of HRRBs worldwide and in Hong Kong. With a focus on bibliographic records from the Web of Science (WoS) database, 1,395 journal articles from 2013 to 2022 were analysed. Furthermore, thirteen studies were systematically reviewed.

Findings

The SR indicated that sustainable practices in developing Hong Kong's HRRBs emphasised zero-carbon buildings, reduced energy usage and energy-efficient retrofitting. Likewise, terms such as BIM, urban density, life cycle assessment and system dynamics are strongly connected with clusters that include “residential buildings”, “high-rise buildings” and “high-rise residential buildings”. The study identified significant themes in establishing HRRBs by combining sustainable practices, emphasising urban governance and policy management, building performance and thermal comfort, energy and design optimisation, occupant behaviour and sensitivity analysis. Core sustainability ideas have improved resource management, air quality management and knowledge of user behaviour in HRRBs.

Originality/value

The study allows researchers and practitioners to explore future research directions in the built environment per the application of sustainable concepts in the development of HRRBs from design, construction and post-construction phases.

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 22 March 2024

Abdul Rauf, Daniel Efurosibina Attoye and Robert H. Crawford

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received…

Abstract

Purpose

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received little attention. We aimed to address this knowledge gap, particularly in the context of the UAE and investigated the embodied energy associated with the use of concrete and other materials commonly used in residential buildings in the hot desert climate of the UAE.

Design/methodology/approach

Using input–output based hybrid analysis, we quantified the life-cycle embodied energy of a villa in the UAE with over 50 years of building life using the average, minimum, and maximum material service life values. Mathematical calculations were performed using MS Excel, and a detailed bill of quantities with >170 building materials and components of the villa were used for investigation.

Findings

For the base case, the initial embodied energy was 57% (7390.5 GJ), whereas the recurrent embodied energy was 43% (5,690 GJ) of the life-cycle embodied energy based on average material service life values. The proportion of the recurrent embodied energy with minimum material service life values was increased to 68% of the life-cycle embodied energy, while it dropped to 15% with maximum material service life values.

Originality/value

The findings provide new data to guide building construction in the UAE and show that recurrent embodied energy contributes significantly to life-cycle energy demand. Further, the study of material service life variations provides deeper insights into future building material specifications and management considerations for building maintenance.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 October 2023

Omar Doukari, Mohamad Kassem, Enrico Scoditti, Rahim Aguejdad and David Greenwood

Buildings are among the biggest contributors to environmental impacts. To achieve energy-saving and decarbonisation objectives while also improving living conditions, it is…

112

Abstract

Purpose

Buildings are among the biggest contributors to environmental impacts. To achieve energy-saving and decarbonisation objectives while also improving living conditions, it is imperative to undertake large-scale renovations of existing buildings, which constitute the greater part of building stock and have relatively low energy efficiency. However, building renovation projects poses significant challenges owing to the absence of optimised tools and methods for planning and executing renovation works, coupled with the need for a high degree of interaction with occupants.

Design/methodology/approach

This paper describes the development of an automated process, based on building information modelling (BIM) and the principal component analysis method, for overcoming building renovation challenges. The process involves the assessment and simulation of renovation scenarios in terms of duration, cost, effort needed and disruptive potential. The proposed process was tested in three case studies; multi-residence apartment buildings comprising different construction components and systems, located in Greece, France and Denmark, on which six different renovation strategies were evaluated using sensitivity analysis.

Findings

The developed tool was successfully able to model and simulate the six renovation scenarios across the three demonstration sites. The ability to simulate various renovation scenarios for a given project can help to strategise renovation interventions based on selected key performance indicators as well as their correlation at two different levels: the building level and the renovated surface area level.

Originality/value

The objectives of this paper are twofold: firstly, to present an automated process, using BIM, for evaluating and comparing renovation scenarios in terms of duration, cost, workers needed and disruptive potential; next, to show the subsequent testing of the process and the analysis of its applicability and behaviour when applied on three live demonstration sites located in three different European countries (France, Greece and Denmark), involving six renovation scenarios.

1 – 10 of 38