Search results

1 – 10 of over 2000
Article
Publication date: 8 June 2022

Anna Kowalska and Tomasz Goetzendorf-Grabowski

The purpose of the presented aileron modification analysis is the improvement of the flight handling by eliminating adverse phenomena in the aileron area, such as aileron shaking…

Abstract

Purpose

The purpose of the presented aileron modification analysis is the improvement of the flight handling by eliminating adverse phenomena in the aileron area, such as aileron shaking movements, without the risk of deterioration of flow characteristics during manoeuvres. It was also crucial to reduce aileron forces acting on the control stick.

Design/methodology/approach

Numerical CFD analysis of the aileron system with modifications of sealing in the aileron gap area were performed. The effect of the caulking strip at the upper surface of the aileron gap was determined, as well as caulking at the entrance to the aileron gap on the bottom surface. A solution has also been proposed, consisting of completely closing the aileron gap by using a diaphragm. The three-dimensional flow analysis was carried out, allowing localization of the flow disturbances in the aileron gap at cruising speed. The result of the analysis are the aerodynamic and the hinge moment coefficients determining forces on the control stick, depending on the type of seals.

Findings

It has been shown that the use of subsequent sealing means has a direct impact on the hinge moment value. The results of the CFD analysis showed that the more closed aileron gap is, the higher aileron forces are generated on the control stick. Completely closing the flow in the aileron gap changes the character of the force generated on the control stick.

Practical implications

Through CFD analyses of the aileron gap sealing in the PZL-130 Orlik aircraft, the impact of successive aileron gap sealing on the aileron efficiency was determined. It has been shown that simple change of the aileron gap size by the slat sealing can significantly affect the value of the forces generated on the control stick.

Originality/value

The research using CFD methods allowed to verify the impact of the particular type of aileron gap sealing on the hinge moment value and thus to determine proper sealing configuration for the PZL-130 Orlik aircraft at low computational cost.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 1954

E.G. MA Broadbent and A.F.R.Ae.S.

THE primary duties of an aircraft design team are to design an aircraft capable of meeting a certain specification of performance and manoeuvrability with suitable flying…

Abstract

THE primary duties of an aircraft design team are to design an aircraft capable of meeting a certain specification of performance and manoeuvrability with suitable flying qualities, and to ensure that it will be strong enough to withstand any aerodynamic loads it may suffer in flight. It will be found that the aircraft when built is not a rigid structure, but this in itself is not important. We are all familiar with the flexing of an aircraft's wings when struck by a sharp gust of wind in flight, but as long as the wings are strong enough no harm is done. On the contrary, in a passenger aircraft the flexibility of the wings in bending will have a favourable effect, as it will cushion the passengers to some extent from the suddenness of the gust. Flexibility of the structure, however, is not always beneficial and it often introduces new difficulties in the designer's problems. These difficulties arise when the deformation of the aircraft structure introduces additional aerodynamic forces of appreciable magnitude. The additional forces will themselves cause deformation of the structure which may introduce still further aerodynamic forces, and so on. It is interactions of this type between elastic and aerodynamic forces which lead to the oscillatory phenomenon of flutter, and to the non‐oscillatory phenomena of divergence and reversal of control. The study of these three aero‐elastic problems becomes more important as aircraft speeds increase, because increase of design speeds leads to more slender aircraft with thinner wings, and therefore to relatively greater flexibility of the structure. The dangers, in fact, are such that the designers of a modern high‐performance aircraft have to spend considerable effort on the prediction of aero‐elastic effects in order that suitable safeguards can be included in the design. By far the greatest part of this effort is spent on flutter, which will be discussed in Parts II, III and IV of this series, but any of the three problems may force the designers to increase the structural stiffness of parts of the aircraft. The wing skin thickness on a modern aircraft, for example, is nearly always designed by consideration either of aileron reversal or wing flutter. Divergence is usually less important but as it is the simplest of the three phenomena to treat analytically, we shall study it first.

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 August 2020

Leyla Bouzid, Mohand Hamizi, Naceur-Eddine Hannachi, Aghiles Nekmouche and Karim Akkouche

The purpose of this study is to establish a relationship between causes and effects, the respect of materials characteristics values [concrete compressive strength (fc) and steel…

Abstract

Purpose

The purpose of this study is to establish a relationship between causes and effects, the respect of materials characteristics values [concrete compressive strength (fc) and steel yield stress (fy)] and the norms of the construction dispositions value (covers). This study is motivated by the post-seismic damages related to the plastification of the reinforced concrete (RC)/beams sections, named plastic hinges. The results are given by fragility curves representing the failure probability (Pf) of the plastic hinges versus covers value.

Design/methodology/approach

A mechanical-reliability coupling methodology is proposed and performed on three frames (three, six and nine storey). For each frame, seven covers the value of reinforcement steel bars has been taken into account in the beams. After definition of the limit state function G(x), a process of idea to twin-track; deterministic and probabilistic, is considered. Thus, numerical simulations are carried out under ETABS© software, to extract a soliciting moments Ms(x). Then, ultimate moments Mu(x), the result of reliability approach are calculated using Monte Carlo Simulations. In this step, two random variables; concrete compressive strength in 28 days of age (fc) and steel yield stress (fy), have been studied.

Findings

In the mechanical study, the results show that, the first plastic hinge appears at the beams for all frames. In the reliability study, the (fy) variation shows that all plastic hinges are in failure domain, nevertheless, the (fc) variation leads to have all sections in the safety domain, except A7 and B7 models. The failure probability (Pf) calculation according to (fc) and (fy) shows that an absolute error of 0.5 cm in the steel bars covers can switch the frame from the safety domain to the failure domain.

Originality/value

The plastic hinges reliability of the RC/ frame structures is independent on the high of the structure. The (fc) random variable according to the used distribution law does not affect the reliability (safety or failure). However, the impact of the steel yield stress variation (fy) is not negligible. The errors in covers affect considerably the strength of the elements.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 May 1945

A.R. Weyl

WITH tailless aeroplanes, all known aerodynamic control devices possess the peculiarity of not only producing moments about one axis, but of also causing secondary moments about…

98

Abstract

WITH tailless aeroplanes, all known aerodynamic control devices possess the peculiarity of not only producing moments about one axis, but of also causing secondary moments about one or both of the other axes. Horizontal controllers forming part of the wing near the tips in wings having sweep‐back or sweep‐forward, for instance, do not produce rolling moments alone, when differ‐entially deflected; they also cause yawing and pitching moments. Similarly, wing‐tip disk rudders operated on such wings not only produce yawing moments, but may cause rolling and even pitching moments.

Details

Aircraft Engineering and Aerospace Technology, vol. 17 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 6 September 2011

Yihua Cao, Kungang Yuan and Guozhi Li

The purpose of this paper is to describe a methodology for predicting the effects of glaze ice geometry on airfoil aerodynamic coefficients by using neural network (NN…

Abstract

Purpose

The purpose of this paper is to describe a methodology for predicting the effects of glaze ice geometry on airfoil aerodynamic coefficients by using neural network (NN) prediction. Effects of icing on angle of attack stall are also discussed.

Design/methodology/approach

The typical glaze ice geometry covers ice horn leading‐edge radius, ice height, and ice horn position on airfoil surface. By using artificial NN technique, several NNs are developed to study the correlations between ice geometry parameters and airfoil aerodynamic coefficients. Effects of ice geometry on airfoil hinge moment coefficient are also obtained to predict the angle of attack stall.

Findings

NN prediction is feasible and effective to study the effects of ice geometry on airfoil performance. The ice horn location and height, which have a more evident and serious effect on airfoil performance than ice horn leading‐edge radius, are inversely proportional to the maximum lift coefficient. Ice accretions on the after‐location of the upper surface of the airfoil leading edges have the most critical effects on the airfoil performance degradation. The catastrophe of hinge moment and unstable hinge moment coefficient can be used to predict the stall effectively.

Practical implications

Since the simulation results of NNs are shown to have high coherence with the tunnel test data, it can be further used to predict coefficients at non‐experimental conditions.

Originality/value

The simulation method by using NNs here can lay the foundation of the further research about the airfoil performance in different ice cloud conditions through predicting the relations between the ice cloud conditions and ice geometry.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 May 1954

E.G. Broadbent

WE concluded Part II of this series with the remark that a different outlook is needed for problems of control surface flutter than for those of wing flutter. There are two…

Abstract

WE concluded Part II of this series with the remark that a different outlook is needed for problems of control surface flutter than for those of wing flutter. There are two reasons for this. Wing flutter must be investigated carefully early on in the design of an aircraft so as to provide a safe aircraft without a severe weight penalty, whereas the weight penalty of avoiding control surface flutter is usually small, although not negligible, and modifications can often be made at short notice, so it is important to make a full investigation as late as possible before flight when all the data are available in a reliable form. The second reason is that with wing flutter, as with aileron reversal and divergence, it is usual to think of safety margins in terms of forward speed or possibly wing torsional stiffness; with control surface flutter, on the other hand, quite different types of safety factor become the rule.

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 2004

L. Djayapertapa and C.B. Allen

Transonic flutter and active flap control, in two dimensions, are simulated by coupling independent structural dynamic and inviscid aerodynamic models, in the time domain. A…

2029

Abstract

Transonic flutter and active flap control, in two dimensions, are simulated by coupling independent structural dynamic and inviscid aerodynamic models, in the time domain. A flight control system, to actively control the trailing edge flap motion, has also been incorporated and, since this requires perfect synchronisation of fluid, structure and control signal, the “strong” coupling approach is adopted. The computational method developed is used to perform transonic aeroelastic and aeroservoelastic calculations in the time domain, and used to compute stability (flutter) boundaries of 2D wing sections. Open and closed loop simulations show that active control can successfully suppress flutter and results in a significant increase in the allowable speed index in the transonic regime. It is also shown that active control is still effective when there is free‐play in the control surface hinge. Flowfield analysis is used to investigate the nature of flutter and active control, and the fundamental importance of shock wave motion in the vicinity of the flap is demonstrated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 June 2020

Mehran Masdari, Milad Mousavi and Mojtaba Tahani

One of the best methods to improve wind turbine aerodynamic performance is modification of the blade’s airfoil. The purpose of this paper is to investigate the effects of gurney…

Abstract

Purpose

One of the best methods to improve wind turbine aerodynamic performance is modification of the blade’s airfoil. The purpose of this paper is to investigate the effects of gurney flap geometry and its oscillation parameters on the pitching NACA0012 airfoil.

Design/methodology/approach

This numerical solution has been carried out for different cases of gurney flap mounting angles, heights, reduced frequencies and oscillation amplitudes, then the results were compared to each other. The finite volume method was used for the discretization of the governing equations, and the PISO algorithm was used to solve the equations. Also, the “SST” was adopted as the turbulence model in the simulation.

Findings

In this paper, the different parameters of gurney flap were investigated. The results showed that the best range of gurney flap height are between 1 and 3.2% of chord and the best ratio of lifting to drag coefficient is achieved in gurney flap with an angle of 90° relative to the chord direction. The dynamic stall angle of the airfoil with gurney flap decreases were compared to without gurney flap. Earlier LEV formation can be one of the main reasons for decreasing the dynamic stall angle of the airfoil with gurney flap. Increasing the reduced frequency and oscillation amplitude causes rising of maximum lift coefficient and consequently lift curve slope. Moreover, gurney flap with mounting angle has a lower hinge moment than the gurney flap without mounting angle but with the same vertical axis length. So, there is more complexity in structural design concerning the gurney flap without mounting angle.

Practical implications

Improving aerodynamic efficiency of airfoils is vital for obtaining more output power in VAWTs. Gurney flaps are one of the best mechanisms to increase the aerodynamic performance of the airfoil and increases the efficiency of VAWTs.

Originality/value

Investigating the hinge moment on the connection point of the airfoil, gurney flap and try to compare the gurney flap with and without angle.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 1929

The forces on ellipsoidal bodies placed obliquely in a converging or a diverging stream can be found direct by calculation of the pressures on the surfaces. It seemed worth while…

Abstract

The forces on ellipsoidal bodies placed obliquely in a converging or a diverging stream can be found direct by calculation of the pressures on the surfaces. It seemed worth while to do this in illustration of the general question, as a rather plausible line of argument had led to erroneous values of the transverse force. The results are found to agree with those of the indirect, but more general, investigation by Professor G. I. Taylor in R. & M. 1166.

Details

Aircraft Engineering and Aerospace Technology, vol. 1 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 1948

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Notes of the United States National…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Notes of the United States National Advisory Committee for Aeronautics and publications of other similar Research Bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 20 no. 9
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 2000