Search results

1 – 10 of over 3000
Article
Publication date: 21 March 2008

Manpreet Kaur, Harpreet Singh and Satya Prakash

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature

1454

Abstract

Purpose

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature corrosion and erosion‐corrosion of materials.

Design/methodology/approach

This paper describes one of the recent thermal‐spray processes, namely HVOF thermal‐spray technology and presents a survey of the studies on the use of this technique to provide protection against corrosion and erosion‐corrosion of high temperature alloys, with a special emphasis on boiler steels.

Findings

High temperature corrosion and erosion‐corrosion are serious problems observed in steam‐powered electricity generation plants, gas turbines, internal combustion engines, fluidized bed combustors, industrial waste incinerators and recovery boilers in paper and pulp industries. These problems can be prevented by changing the material or altering the environment, or by separating the component surface from the environment. Corrosion prevention by the use of coatings for separating materials from the environment is gaining importance in surface engineering. Amongst various surface modifying techniques, thermal spraying has developed relatively rapidly due to the use of advanced coating formulations and improvements in coating application technology. One of the variants of thermal spraying, namely HVOF has gained popularity in recent times due to its flexibility for in‐situ applications and superior coating properties.

Research limitations/implications

This review covers mainly information that has been reported previously in the open literature, international journals and some well‐known textbooks.

Practical implications

The paper presents a concise summary of information for scientists and academics, planning to start their research work in the area of surface engineering.

Originality/value

This paper fulfils an identified information/resources need and offers practical help to an individual starting out on a career in the area of surface engineering for erosion‐corrosion and wear.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 July 2022

Wei Liu, Zhiping Zhou, Zhaolin Li, Mingxing Li, Qiongwei Li, Zhengrong Ye, Jinxing Yao and Xiankang Zhong

This paper aims to investigate the high-temperature mechanical properties of HS110S steel and its corrosion behaviors in harsh downhole environment.

Abstract

Purpose

This paper aims to investigate the high-temperature mechanical properties of HS110S steel and its corrosion behaviors in harsh downhole environment.

Design/methodology/approach

In this work, mechanical property measurements were carried out from 25°C to 350°C and the scanning electron microscopy was used to observe the fracture morphology. The weight-loss measurements and surface characterization were used to evaluate the corrosion resistance of HS110S steel in harsh downhole environment.

Findings

Results show that the yield strength and tensile strength of HS110S steel at 350 °C are 779 and 861 MPa, respectively. Compared with room temperature, the reduction rate values are both less than 20%. At the high-temperature corrosion environment (350 °C), the static and dynamic corrosion rates are 0.9668 and 1.9236 mm/a, respectively. The generated corrosion products are mainly composed of FeSx, FeCO3 and Fe3O4. Therefore, the HS110S steel applied under such conditions needs to take suitable protective measures.

Originality/value

In general, the HS110 steel has widely used in conventional development conditions (e.g. low H2S or high CO2 environments). However, to the best of the authors’ knowledge, no studies have reported on its application at more than 250°C. Therefore, this work can be a reference to the application of HS110S steel in high-temperature corrosion conditions.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 September 1984

A.U. Malik and Sharif Ahmed

High temperature oxidation and hot corrosion behaviour of some ceramic‐based coatings, e.g. borate, silicate‐chromate and carbide‐oxide on mild steel has been investigated in the…

Abstract

High temperature oxidation and hot corrosion behaviour of some ceramic‐based coatings, e.g. borate, silicate‐chromate and carbide‐oxide on mild steel has been investigated in the temperature range of 400–850°C. The coated steel in general shows much better oxidation and hot corrosion resistance than the uncoated steel specially at higher temperatures. The borate coating has better hot corrosion resistance performance between 700 and 800°C whereas silicate‐chromate is suitable at temperatures above 800°C. The coated steels show parabolic behaviour during oxidation. In presence of Na2SO4, the corrosion rate increases with increasing salt concentration till a maxima is reached. The amount of Na2SO4 corresponding to the maximum corrosion rate decreases with increasing temperature. A self‐sustained fluxing cum sulphidation mechanism has been proposed to explain hot corrosion behaviour of uncoated or coated mild steel.

Details

Anti-Corrosion Methods and Materials, vol. 31 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 9 October 2023

Yuchen Xi, Qinying Wang, Xinyu Tan, Xingshou Zhang, Lijin Dong, Yuhui Song, Liyang Liu and Dezhi Zeng

The purpose of this work is to design the wire beam electrode (WBE) of P110 steel and study its corrosion behavior and mechanism under high temperature and pressure.

Abstract

Purpose

The purpose of this work is to design the wire beam electrode (WBE) of P110 steel and study its corrosion behavior and mechanism under high temperature and pressure.

Design/methodology/approach

Packaging materials of the new type P110 steel WBE and high pressure stable WBE structure were designed. A metallurgical microscope (XJP-3C) and scanning electron microscopy (EV0 MA15 Zeiss) with an energy dispersive spectrometer were used to analyze the microstructure and composition of the P110 steel. The electrochemical workstation (CS310, CorrTest Instrument Co., Ltd) with a WBE potential and current scanner was used to analyze the corrosion mechanism of P110 steel.

Findings

According to the analysis of Nyquist plots at different temperatures, the corrosion resistance of P110 steel decreases with the increase of temperature under atmospheric pressure. In addition, Rp of P110 steel under high pressure is maintained in the range of 200 ∼ 375 Ωcm2, while that under atmospheric pressure is maintained in the range of 20 ∼ 160 Ωcm2, indicating that the corrosion products on P110 steel under high pressure is denser, which improves the corrosion resistance of P110 steel to a certain extent.

Originality/value

The WBE applied in high temperature and pressure environment is in blank. This work designed and prepared a WBE of P110 steel for high temperature and pressure environment, and the corrosion mechanism of P110 steel was revealed by using the designed WBE.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 2016

Xianghong Lv, Guoxian Zhao, Fuxiang Zhang, Xiang Tong Yang, Dan Ba, Junfeng Xie and Yan Xue

The purpose of this investigation was to study the function mechanisms of a corrosion inhibitor package used for martensitic stainless steel tubulars in acid solution at high

Abstract

Purpose

The purpose of this investigation was to study the function mechanisms of a corrosion inhibitor package used for martensitic stainless steel tubulars in acid solution at high temperatures.

Design/methodology/approach

The inhibition performance was evaluated by means of an acid corrosion test at high temperature and high pressure, and the functional mechanism of the inhibitor package at different temperatures was investigated using polarization curve and electrochemical impedance spectroscopy measurements.

Findings

The results showed that the corrosion inhibitor package chosen for high-temperature and high-pressure gas well applications was very suitable for use with 13Cr super martensitic stainless steel. At lower temperatures, the function mechanism of the corrosion inhibitor package was characterized as a type of negative catalytic effect. As the temperature was increased, the effect of the intensifier in the package became more significant and the function mechanism changed to be the geometric covering effect type.

Originality/value

This study has the important practical value for guiding the oil field to conduct reasonable screening and using the acidizing corrosion inhibitor for martensite stainless steel tubulars.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 May 2023

Khushdeep Goyal, Davinder Singh, Harvinder Singh and Charanjit Singh

This paper aims to investigate the high temperature corrosion behaviour of ZrO2-reinforced Cr2O3 matrix-based composite coatings on ASTM-SA213-T-22 steel at 900°C in molten salt…

Abstract

Purpose

This paper aims to investigate the high temperature corrosion behaviour of ZrO2-reinforced Cr2O3 matrix-based composite coatings on ASTM-SA213-T-22 steel at 900°C in molten salt environment. The different coatings were deposited by high velocity oxy fuel (HVOF) method.

Design/methodology/approach

Hot corrosion studies were conducted in simulated boiler environment in silicon carbide tube furnace at 900°C for 50 cycles on bare and HVOF-coated boiler steel specimens. Each cycle consisted 50 h of heating in the simulated boiler environment followed by 20 min of cooling in air. The weight change measurements were performed after each cycle to establish the kinetics of corrosion using thermogravimetric technique. X-ray diffraction and scanning electron microscopy techniques were used to analyse the corroded specimens.

Findings

The addition of 20 Wt.% ZrO2 in Cr2O3 helped reduce corrosion rate by 89.25% as compared to that of uncoated specimen. The phase analysis revealed the presence of Cr2O3 and ZrO2 phases in composite coating matrix, which may have prevented the base metal from interacting with the corrosive elements present in the highly aggressive environment and thus had increased the resistance to hot corrosion.

Originality/value

It should be mentioned here that high temperature corrosion behaviour of thermally sprayed ZrO2–Cr2O3 composite coatings has never been studied, and to the best of the authors’ knowledge, it is not available in the literature. Hence, present investigation can provide valuable information for application of ZrO2-reinforced coatings in high temperature fuel combustion environments.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 September 2018

Khushdeep Goyal, Hazoor Singh and Rakesh Bhatia

Molten sulphate-vanadate induced hot corrosion is the main reason of failure of boiler tubes used at high temperatures in thermal power plants. The hot corrosion can be…

193

Abstract

Purpose

Molten sulphate-vanadate induced hot corrosion is the main reason of failure of boiler tubes used at high temperatures in thermal power plants. The hot corrosion can be encountered by applying thermal spray coatings on the alloy steels. In this perspective, this paper aims to attempt to investigate the effect of carbon nanotubes reinforcement on Cr2O3 composite coatings on hot corrosion behaviour of ASTM-SA213-T22 steel in a corrosive environment of Na2SO4 – 60%V2O5 at 900°C for 50 cycles.

Design/methodology/approach

The coatings have been deposited with high velocity oxy fuel process. The samples were exposed to hot corrosion in a Silicon tube furnace at 900°C for 50 cycles. The kinetics of corrosion behaviour were analysed by the weight gain measurements after each cycle. Corrosion products were analysed with X-ray diffraction, scanning electron microscopy, energy dispersive and cross-sectional analysis techniques.

Findings

During investigations, the carbon nanotubes (CNT) reinforced Cr2O3 composite coatings on T22 steel were found to provide better corrosion resistance in the molten salt environment at 900°C. The coatings showed lower weight gain along with formation of protective oxide scales during the experiment. Improvement in protection against hot corrosion was observed with increase in CNT content in the coating matrix.

Research limitations/implications

The addition of CNT has resulted in reduction in porosity by filling the voids in chromium oxide coating, with interlocking of particle and has blocked the penetration of corroding species to enhance the corrosion resistance of the composite coatings. The corrosion rate was found to be decreasing with increase in CNT content in coating matrix.

Originality/value

It must be mentioned here that high temperature corrosion behaviour of thermally sprayed CNT-Cr2O3 composite coatings has never been studied, and it is not available in the literature. Hence, present investigation can provide valuable information for application of CNT-reinforced coatings in high temperature fuel combustion environments.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 September 2017

Amita Rani, Niraj Bala and C.M. Gupta

Hot corrosion is the major degradation mechanism of failure of boiler and gas turbine components. The present work aims to investigate the hot corrosion resistance of detonation…

Abstract

Purpose

Hot corrosion is the major degradation mechanism of failure of boiler and gas turbine components. The present work aims to investigate the hot corrosion resistance of detonation gun sprayed (D-gun) Cr2O3-75 per cent Al2O3 ceramic coating on ASTM-SA210-A1 boiler steel.

Design/methodology/approach

The coating exhibits nearly uniform, adherent and dense microstructure with porosity less than 0.8 per cent. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of bare and coated boiler steel in molten salt environment (Na2SO4-60 per cent V2O5) at high temperature 900°C for 50 cycles. The corrosion products are analyzed by using X-ray diffraction, scanning electron microscopy (SEM) and field emission scanning electron microscope/energy-dispersive analysis (EDAX) to reveal their microstructural and compositional features for elucidating the corrosion mechanisms.

Findings

During investigations, it was found that the Cr2O3-75 per cent Al2O3 coating on Grade A-1 boiler steel is found to be very effective in decreasing the corrosion rate in the molten salt environment at 900°C. The coating has shown lesser weight gains along with better adhesiveness of the oxide scales with the substrate till the end of the experiment. Thus, coatings serve as an effective diffusion barrier to preclude the diffusion of oxygen from the environment into the substrate boiler steel.

Research limitations/implications

Therefore, it is concluded that the better hot corrosion resistance of the coating is due to the formation of desirable microstructural features such as very low porosity, uniform fine grains and the flat splat structures in the coating; as compared to the bare substrate under cyclic conditions.

Practical implications

This research is useful for coal-fired boilers and other power plant boilers.

Social implications

This research is useful for power generation plants.

Originality/value

There is no reported literature on hot corrosion behavior of Cr2O3-75 per cent Al2O3 coating deposited on the selected substrates by D-gun spray technique. The present work has been focused to study the influence of the Cr2O3-75 per cent Al2O3 coating developed with D-gun spraying technique on high temperature corrosion behavior of ASTM-SA210-A-1 boiler steel in an aggressive environment of Na2SO4-60 per cent V2O5 molten salt at 900°C under cyclic conditions.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 December 2023

Yuting Lv, Yaojie Liu, Rui Wang, Hongyao Yu, Zhongnan Bi, Guohao Liu and Guangbao Sun

This paper aims to design a novel TiC/GTD222 nickel-based high-temperature alloy with excellent hot corrosion resistance by incorporating appropriate amounts of C, Al and Ti…

Abstract

Purpose

This paper aims to design a novel TiC/GTD222 nickel-based high-temperature alloy with excellent hot corrosion resistance by incorporating appropriate amounts of C, Al and Ti elements into GTD222 alloy.

Design/methodology/approach

The composite material was prepared using the selective laser melting (SLM) technology, followed by a hot isostatic pressing (HIP) treatment. Subsequently, the composite underwent a hot corrosion test in a 75% Na2SO4 + 25% NaCl mixed salt environment at 900 °C.

Findings

The HIP-SLMed TiC/GTD222 composite exhibits a relatively low weight loss rate. First, the addition of alloying elements facilitates the formation of multiple protective oxide films rich in Al, Ti and Cr. These oxide films play a crucial role in enhancing the material’s resistance to hot corrosion. Second, the HIP treatment results in a reduction of grain size in the composite and an increased number of grain boundaries, which further promote the formation of protective films.

Originality/value

The hot corrosion behavior of the TiC/GTD222 nickel-based composite material prepared through SLM and HIP processing has not been previously studied. This research provides a new approach for designing nickel-based superalloys with excellent hot corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 August 2021

Yuhang Gao, Xiaohong Chen, Ping Liu, Honglei Zhou, Shaoli Fu, Wei Li, Xinkuan Liu, Fengcang Ma, Yanbo Zhu and Jiayan Wu

This study aims to investigate the effect of coatings prepared by the addition of copper-aluminum alloy powder on the corrosion behavior of 90/10 copper-nickel alloy.

Abstract

Purpose

This study aims to investigate the effect of coatings prepared by the addition of copper-aluminum alloy powder on the corrosion behavior of 90/10 copper-nickel alloy.

Design/methodology/approach

Coatings of copper-aluminum alloy powder at different contents (Wt.% = 50%, 60%, 70% and 80%) were prepared by the high-temperature heat treatment process. The microstructure and component of the coatings were characterized by scanning electron microscope, X-ray diffraction, energy dispersive spectrometer and X-ray photoelectron spectroscopy. The electrochemical properties of the coating were explored by electrochemical impedance spectroscopy.

Findings

The results show that the aluminized layer was successfully constructed on the surface of 90/10 copper-nickel alloy, the composition of the coating was composed of copper-aluminum phase and aluminum-nickel phase, the existence of the aluminum-nickel phase was formed by the diffusion of Ni elements within the substrate and because of the diffusion, the Al-Ni phase was distributed in the middle and bottom of the coating more. The Al-Ni phase is considered to be the enhanced phase for corrosion resistance. When the copper-aluminum alloy powder content is 70 Wt.%, the corrosion resistance is the best.

Originality/value

The enhancement of corrosion resistance of 90/10 copper-nickel alloy by the copper-aluminum alloy powder was revealed, the composition of the aluminized layer and the mechanism of corrosion resistance were discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 3000