Search results

1 – 7 of 7
Open Access
Article
Publication date: 27 June 2023

Farid Salari, Paolo Bosetti and Vincenzo M. Sglavo

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design…

Abstract

Purpose

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design file is sliced to generate G-codes before printing. This paper aims to study the effect of key input parameters for slicer software on the final properties of printed products.

Design/methodology/approach

The one factor at a time (OFAT) methodology is used to investigate the impact of selected parameters on the final properties of printed specimens, and the causes for the variations in outcomes of each variable are discussed.

Findings

Finer aggregates can generate a more compact layer, resulting in a denser product with higher strength. Fluid pressure is directly determined by voxel rate (rV); however, high pressures enable better fluid penetration control for fortified products; for extreme rVs, residual voids in the interfaces between successive layers and single-line primitives impair mechanical strength. It was understood that printhead movement along the orientation of the parts in the powder bed improved the mechanical properties.

Originality/value

The design of experiment (DOE) method assesses the influence of process parameters on various input printing variables at the same time. As the resources are limited, a fractional factorial plan is carried out on a subset of a full factorial design; hence, providing physical interpretation behind changes in each factor is difficult. OFAT aids in analyzing the effect of a change in one factor on output while all other parameters are kept constant. The results assist engineers in properly considering the influence of variable variations for future DOE designs.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 16 August 2023

Andrea Zani, Alberto Speroni, Andrea Giovanni Mainini, Michele Zinzi, Luisa Caldas and Tiziana Poli

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based…

Abstract

Purpose

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based matrix coupled with a stretchable three-dimensional textile. The paper’s aim is, through a performance-based generative design approach, to develop a high-performance static shading system able to guarantee adequate daylit spaces, a connection with the outdoors and a glare-free environment in the view of a holistic and occupant-centric daylight assessment.

Design/methodology/approach

The paper describes the design and simulation process of a complex static shading system for digital manufacturing purposes. Initially, the optical material properties were characterized to calibrate radiance-based simulations. The developed models were then implemented in a multi-objective genetic optimization algorithm to improve the shading geometries, and their performance was assessed and compared with traditional external louvres and overhangs.

Findings

The system developed demonstrates, for a reference office space located in Milan (Italy), the potential of increasing useful daylight illuminance by 35% with a reduced glare of up to 70%–80% while providing better uniformity and connection with the outdoors as a result of a topological optimization of the shape and position of the openings.

Originality/value

The paper presents the innovative nature of a new composite material that, coupled with the proposed performance-based optimization process, enables the fabrication of optimized shading/cladding surfaces with complex geometries whose formability does not require ad hoc formworks, making the process fast and economic.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 16 December 2022

Uchenna Luvia Ezeamaku, Chinyere Ezekannagha, Ochiagha I. Eze, Nkiru Odimegwu, Angela Nwakaudu, Amarachukwu Okafor, Innocent Ekuma and Okechukwu Dominic Onukwuli

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava…

739

Abstract

Purpose

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava starch) was studied.

Design/methodology/approach

The PALF was exposed to sodium hydroxide (NaOH) treatment in varying concentrations of 2.0, 3.7, 4.5 and 5.5g prior to the fiber treatment with KMnO4. The treated and untreated PALFs were reinforced with tapioca-based bio resin. Subsequently, they were subjected to Fourier transform infrared (FTIR) and tensile test analysis.

Findings

The FTIR analysis of untreated PALF revealed the presence of O-H stretch, N-H stretch, C=O stretch, C=O stretch and H-C-H bond. The tensile test result confirmed the highest tensile strength of 35N from fiber that was reinforced with 32.5g of cassava starch and treated with 1.1g of KMnO4. In comparison, the lowest tensile strength of 15N was recorded for fiber reinforced with 32.5g of cassava starch without KMnO4 treatment.

Originality/value

Based on the results, it could be deduced that despite the enhancement of bioresin (cassava starch) towards strength-impacting on the fibers, KMnO4 treatment on PALF is very vital for improved tensile strength of the fiber when compared to untreated fibers. Hence, KMnO4 treatment on alkali-treated natural fibers preceding reinforcement is imperative for bio-based fibers.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 3
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 31 October 2023

Hongping Xing, Yu Liu and Xiaodan Sun

The smoothness of the high-speed railway (HSR) on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges, which may threaten the safety…

Abstract

Purpose

The smoothness of the high-speed railway (HSR) on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges, which may threaten the safety of running trains. Indeed, few studies have evaluated the exceeding probability of rail displacement exceeding the allowable standard. The purposes of this article are to provide a method for investigating the exceeding probability of the rail displacement of HSRs under seismic excitation and to calculate the exceeding probability.

Design/methodology/approach

In order to investigate the exceeding probability of the rail displacement under different seismic excitations, the workflow of analyzing the smoothness of the rail based on incremental dynamic analysis (IDA) is proposed, and the intensity measure and limit state for the exceeding probability analysis of HSRs are defined. Then a finite element model (FEM) of an assumed HSR track-bridge system is constructed, which comprises a five-span simply-supported girder bridge supporting a finite length CRTS II ballastless track. Under different seismic excitations, the seismic displacement response of the rail is calculated; the character of the rail displacement is analyzed; and the exceeding probability of the rail vertical displacement exceeding the allowable standard (2mm) is investigated.

Findings

The results show that: (1) The bridge-abutment joint position may form a step-like under seismic excitation, threatening the running safety of high-speed trains under seismic excitations, and the rail displacements at mid-span positions are bigger than that at other positions on the bridge. (2) The exceeding probability of rail displacement is up to about 44% when PGA = 0.01g, which is the level-five risk probability and can be described as 'very likely to happen'. (3) The exceeding probability of the rail at the mid-span positions is bigger than that above other positions of the bridge, and the mid-span positions of the track-bridge system above the bridge may be the most hazardous area for the running safety of trains under seismic excitation when high-speed trains run on bridges.

Originality/value

The work extends the seismic hazardous analysis of HSRs and would lead to a better understanding of the exceeding probability for the rail of HSRs under seismic excitations and better references for the alert of the HSR operation.

Open Access
Article
Publication date: 19 March 2024

Feng Chen, Zhongjin Wang, Dong Zhang and Shuai Zeng

Explore the development trend of chemically-improved soil in railway engineering.

Abstract

Purpose

Explore the development trend of chemically-improved soil in railway engineering.

Design/methodology/approach

In this paper, the technical standards home and abroad were analyzed. Laboratory test, field test and monitoring were carried out.

Findings

The performance design system of the chemically-improved soil should be established.

Originality/value

On the basis of the performance design, the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 10 October 2018

Chander Prakash, Sunpreet Singh, Ilenia Farina, Fernando Fraternali and Luciano Feo

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently…

1125

Abstract

Purpose

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently, biodegradable material possessing such superior properties has been the focus with an aim of revolutionizing implant’s design, material and performance. This paper aims to present a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by mechanical alloying and spark plasma sintering (MA-SPS) technique.

Design/methodology/approach

This paper presents a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by MA-SPS technique. As the key alloying elements, HA powders with an appropriate proportion weight 5 and 10 are mixed with the base elemental magnesium (Mg) particles to form the composites of potentially variable porosity and mechanical property. The aim is to investigate the performance of the synthesized composites of Mg-3Si together with HA in terms of mechanical integrity hardness and Young’s moduli corrosion resistance and in-vitro bioactivity.

Findings

Mechanical and surface characterization results indicate that alloying of Si leads to the formation of fine Mg2 Si eutectic dense structure, hence increasing hardness while reducing the ductility of the composite. On the other hand, the allying of HA in Mg-3Si matrix leads to the formation of structural porosity (5-13 per cent), thus resulting in low Young’s moduli. It is hypothesized that biocompatible phases formed within the composite enhanced the corrosion performance and bio-mechanical integrity of the composite. The degradation rate of Mg-3Si composite was reduced from 2.05 mm/year to 1.19 mm/year by the alloying of HA elements. Moreover, the fabricated composites showed an excellent bioactivity and offered a channel/interface to MG-63 cells for attachment, proliferation and differentiation.

Originality/value

Overall, the findings suggest that the Mg-3Si-HA composite fabricated by MA and plasma sintering may be considered as a potential biodegradable material for orthopedic application.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 16 October 2018

Ada Amendola, Ida Mascolo and Gianmario Benzoni

This paper aims to review recent literature results on the mechanical response of confined pentamode structures behaving either in the stretching-dominated or the…

Abstract

Purpose

This paper aims to review recent literature results on the mechanical response of confined pentamode structures behaving either in the stretching-dominated or the bending-dominated regimes.

Design/methodology/approach

The analyzed structures consist of multilayer systems formed by pentamode lattices alternated with stiffening plates and are equipped with rigid or hinged connections.

Findings

It is shown that such structures are able to carry unidirectional compressive loads with sufficiently high stiffness, while showing markedly low stiffness against shear loads. In particular, their shear stiffness may approach zero in the stretching-dominated regime.

Originality/value

The presented results highlight the high engineering potential of laminated pentamode metamaterials as novel isolation devices to be used for the protection of buildings against shear waves.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

1 – 7 of 7